×

一元二次方程解法例题,数学 求20道一元二次方程应用题

admin admin 发表于2024-01-11 09:26:20 浏览10 评论0

抢沙发发表评论

本文目录一览:

一元二次方程的三种解法

  1、直接开平方法:
  直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m .
  例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
  分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
  (1)解:(3x+1)2=7×
  ∴(3x+1)2=5
  ∴3x+1=±(注意不要丢解)
  ∴x=
  ∴原方程的解为x1=,x2=
  (2)解: 9x2-24x+16=11
  ∴(3x-4)2=11
  ∴3x-4=±
  ∴x=
  ∴原方程的解为x1=,x2=
  2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
  先将常数c移到方程右边:ax2+bx=-c
  将二次项系数化为1:x2+x=-
  方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
  方程左边成为一个完全平方式:(x+ )2=
  当b^2-4ac≥0时,x+ =±
  ∴x=(这就是求根公式)
  例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)
  解:将常数项移到方程右边 3x^2-4x=2
  将二次项系数化为1:x2-x=
  方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
  配方:(x-)2=
  直接开平方得:x-=±
  ∴x=
  ∴原方程的解为x1=,x2= .
  3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
  例3.用公式法解方程 2x2-8x=-5
  解:将方程化为一般形式:2x2-8x+5=0
  ∴a=2, b=-8, c=5
  b^2-4ac=(-8)2-4×2×5=64-40=24>0
  ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
  ∴原方程的解为x1=,x2= .
  4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
  例4.用因式分解法解下列方程:
  (1) (x+3)(x-6)=-8 (2) 2x2+3x=0
  (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
  (1)解:(x+3)(x-6)=-8 化简整理得
  x2-3x-10=0 (方程左边为二次三项式,右边为零)
  (x-5)(x+2)=0 (方程左边分解因式)
  ∴x-5=0或x+2=0 (转化成两个一元一次方程)
  ∴x1=5,x2=-2是原方程的解。
  (2)解:2x2+3x=0
  x(2x+3)=0 (用提公因式法将方程左边分解因式)
  ∴x=0或2x+3=0 (转化成两个一元一次方程)
  ∴x1=0,x2=-是原方程的解。
  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
  (3)解:6x2+5x-50=0
  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
  ∴2x-5=0或3x+10=0
  ∴x1=, x2=- 是原方程的解。
  (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
  (x-2)(x-2 )=0
  ∴x1=2 ,x2=2是原方程的解。
  小结:
  一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
  直接开平方法是最基本的方法。
  公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
  配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
  解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
  例5.用适当的方法解下列方程。(选学)
  (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
  (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
  分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积。
  (2)可用十字相乘法将方程左边因式分解。
  (3)化成一般形式后利用公式法解。
  (4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
  (1)解:4(x+2)2-9(x-3)2=0
  [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
  (5x-5)(-x+13)=0
  5x-5=0或-x+13=0
  ∴x1=1,x2=13
  (2)解: x2+(2- )x+ -3=0
  [x-(-3)](x-1)=0
  x-(-3)=0或x-1=0
  ∴x1=-3,x2=1
  (3)解:x2-2 x=-
  x2-2 x+ =0 (先化成一般形式)
  △=(-2 )2-4 ×=12-8=4>0
  ∴x=
  ∴x1=,x2=
  (4)解:4x2-4mx-10x+m2+5m+6=0
  4x2-2(2m+5)x+(m+2)(m+3)=0
  [2x-(m+2)][2x-(m+3)]=0
  2x-(m+2)=0或2x-(m+3)=0
  ∴x1= ,x2=
  例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)
  分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
  解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
  即 (5x-5)(2x-3)=0
  ∴5(x-1)(2x-3)=0
  (x-1)(2x-3)=0
  ∴x-1=0或2x-3=0
  ∴x1=1,x2=是原方程的解。
  例7.用配方法解关于x的一元二次方程x2+px+q=0
  解:x2+px+q=0可变形为
  x2+px=-q (常数项移到方程右边)
  x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)
  (x+)2= (配方)
  当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)
  ∴x=- ±=
  ∴x1= ,x2=
  当p2-4q<0时,<0此时原方程无实根。
  说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母取值的要求,必要时进行分类讨论。
  练习:
  (一)用适当的方法解下列方程:
  1. 6x2-x-2=0 2. (x+5)(x-5)=3
  3. x2-x=0 4. x2-4x+4=0
  5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
  (二)解下列关于x的方程
  1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
  练习参考答案:
  (一)1.x1=- ,x2= 2.x1=2,x2=-2
  3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
  6.解:(把2x+3看作一个整体,将方程左边分解因式)
  [(2x+3)+6][(2x+3)-1]=0
  即 (2x+9)(2x+2)=0
  ∴2x+9=0或2x+2=0
  ∴x1=-,x2=-1是原方程的解。
  (二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0
  [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
  ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
  ∴x1= +b,x2= -b是 ∴x1= a,x2=a是
  原方程的解。 原方程的解。

一元二次方程解法,举几个例子要过程

一元二次方程解法
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
如:解方程:x^2+2x+1=0
利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

请问一道一元二次方程的题怎么做?

解答过程如下:
x^2+x-12=0
解:
由题意得:a=1 b=1 c=-12
所以b^2-4ac=49
所以x1=-b+根号下49/2a=3
x2=-b-根号下49/2a=-4
一元二次方程解法:
一、直接开平方法
形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。
二、配方法
1.二次项系数化为1
2.移项,左边为二次项和一次项,右边为常数项。
3.配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。
4.利用直接开平方法求出方程的解。
三、公式法
现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。
四、因式分解法
如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。

一元二次方程解法,举几个例子要过程

一元二次方程有四种解法:   
1、直接开平方法;2、配方法;3、公式法;4、因式分解法。   
1、直接开平方法:
例.解方程(3x+1)^2;=7
解:(3x+1)^2=7  
∴(3x+1)^2=7   
∴3x+1=±√7(注意不要丢解符号)   
∴x= ﹙﹣1±√7﹚/3   
2.配方法:
例.用配方法解方程 3x2-4x-2=0   
解:将常数项移到方程右边 3x2-4x=2  
方程两边都加上一次项系数一半的平方:x2-﹙4/3﹚x+( 4/6)2=2 +(4/6 )2   
配方:(x-4/6)2= 2 +(4/6 )2   
直接开平方得:x-4/6=± √[2 +(4/6 )2 ]   
∴x= 4/6± √[2 +(4/6 )2 ]   
3.公式法:
例.用公式法解方程 2x2-8x=-5   
解:将方程化为一般形式:2x2-8x+5=0   
∴a=2, b=-8, c=5   
b2-4ac=(-8)2-4×2×5=64-40=24>0   
∴x=[(-b±√(b2-4ac)]/(2a)   
 
4.因式分解法:
例.用因式分解法解下列方程:   
(1) (x+3)(x-6)=-8 (1)
解:(x+3)(x-6)=-8
化简整理得   x2-3x-10=0 (方程左边为二次三项式,右边为零)   
(x-5)(x+2)=0 (方程左边分解因式)   
∴x-5=0或x+2=0 (转化成两个一元一次方程)   
∴x1=5,x2=-2是原方程的解。
http://zhidao.baidu.com/link?url=JkJ0E3U6vH4LR8YcMtv3MpEyosgcNXKLiD4wOspwJoRBHFGBZMxUJHO_3SY4Anmfl1s5n_U3n7qYT0yowSp1ia 
祝学习进步

20道一元二次方程,带解答过程

20道一元二次方程带解答过程是如下:
1、2(x-2)-3(4x-1)=9(1-x) 。
2x-4-12x+3=9-9x。
x=-10。
2. 11x+64-2x=100-9x 。
18x=36。
x=2。
3. 15-(8-5x)=7x+(4-3x) 。
15-8+5x=7x+4-3x。
x=-3。
4. 3(x-7)-2[9-4(2-x)]=22 。
3x-21-2(9-8+4x)=22。
3x-21-2-8x=22。
-5x=55。
x=-11。
5. 2(x-2)+2=x+1 。
2x-4+2=x+1。
x=3。

一元二次函数的解法

一元二次函数的解法介绍如下:
公式法
1、先判断△=b2-4ac,若△<0原方程无实根。
2、若△=0,原方程有两个相同的解为:X=-b/(2a)。
3、若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
配方法
1、先把常数c移到方程右边得:aX2+bX=-c。
2、将二次项系数化为1得:X2+(b/a)X=-c/a。
3、方程两边分别加上(b/a)的一半的平方得:X2+(b/a)X+(b/(2a))2=-c/a+(b/(2a))2。
5、①、若-c/a+(b/(2a))2<0,原方程无实根。
②、若-c/a+(b/(2a))2=0,原方程有两个相同的解为X=-b/(2a)。
③、若-c/a+(b/(2a))2>0,原方程的解为X=(-b)±√((b2-4ac))/(2a)。
直接开平方法
形如(X-m)2=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。
因式分解法
将一元二次方程aX2+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。
注意事项
方法中“√”字样为开根号。公式法和配方法具有通用性,直接开平方法和因式分解法适用于特殊的一元二次方程。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法(换元法,配方法,待定系数法)之一,一定要掌握好。

数学 求20道一元二次方程应用题

增长率问题:1、(2003大连)某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x ,则可列方程为________________;2、(2003北京西城)宏欣机械厂生产某种型号的鼓风机,一月至六月份的产量如下:月 份一二三四五六产量(台)505148505249(1) 求上半年鼓风机月产量和平均数、中位数;(2) 由于改进了生产技术,计划八月份生产鼓风机72台,与上半年月产量平均数相比,七、八月鼓风机生产量平均每月的增长率是多少?
1.小朋养了一群鸽子,小刚问他养了几只,小朋说:“如果你给我一只鸽子,那鸽子总数的平方恰是鸽子总数的9倍。”你知道小明现有多少只鸽子吗?
2.一个两位数等于它个位上的数字的平方,个位上的数字比十位上的数字大3,求这个两位数。
3.一辆红旗桥车新的时候的价值是25W万,若使用第一年后折旧20%,以后每年按另一折旧率进行折旧,这三年末这辆桥车的价值是16.2万元,问:这辆车在第二 .三年中,平均每年的折旧率是多少?
4.将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每张价1元,其销售量就减少10个,为了赚8000元利润,售价定为多少,这时应进货多少个答案1.解:设小朋有X只鸽子.则
(X+1)^2=9(X+1)
解得X=8或X=-1(舍去)
所以小朋养了8只鸽子.
2.解:设着两位数字的个位数字是X.则
X^2=10(X-3)+X
解得X=6或X=5
所以这两个两位数字是36或者25.
3.解:有题意得第2年时的价钱是25*(1-0.2)=20W.
设第2.3年的折旧率为X
则20*(1-X)^2=16.2
解得X=10
所以折旧率为10%.
4.解:设这是售价定为X元(X为大于50的数).则有题意得
[500-(X-40)*10]*X=8000
解得X=10或X=-80(舍去)
所以定价为60元,此时进货500-(60-50)*10=400个

20道用配方法解一元二次方程的题

用配方法解一元二次方程练习题
1.用适当的数填空:
①、x2+6x+ =(x+ )2;
②、x2-5x+ =(x- )2;
③、x2+ x+ =(x+ )2;
④、x2-9x+ =(x- )2
2.将二次三项式2x2-3x-5进行配方,其结果为_________.
3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.
4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.
5.若x2+6x+m2是一个完全平方式,则m的值是( )
A.3 B.-3 C.±3 D.以上都不对
6.用配方法将二次三项式a2-4a+5变形,结果是( )
A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1
7.把方程x+3=4x配方,得( )
A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2
8.用配方法解方程x2+4x=10的根为( )
A.2± B.-2± C.-2+ D.2-
9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值( )
A.总不小于2 B.总不小于7
C.可为任何实数 D.可能为负数
10.用配方法解下列方程:
(1)3x2-5x=2. (2)x2+8x=9
(3)x2+12x-15=0 (4) x2-x-4=0
11.用配方法求解下列问题
(1)求2x2-7x+2的最小值 ;

(2)求-3x2+5x+1的最大值。
1、例题:x2-2x=0
变化:x2-2x+1=1
变化:(x-1) 2=1
变化:x-1=±1
解为:x=2 或 x=0
2、例题:x2-2x=4
变化:x2-2x+1=5
变化:(x-1) 2=5
变化:x-1=±√5
解为:x=1+√5 或 x=1-√5
3、例题:2x2-4x=4
变化:x2-2x+1=3
变化:(x-1) 2=3
变化:x-1=±√3
解为:x=1+√3 或 x=1-√3
4、例题:x2-4x=-4
变化:x2-4x+4=0
变化:(x-2) 2=0
变化:x-2=±0
解为:x=2
5、例题:x2-4x=0
变化:x2-4x+4=4
变化:(x-2) 2=4
变化:x-2=±2
解为:x=4 或 x=0
扩展资料:
配方法解一元二次方程技巧:
1、要将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
2、配方法的理论依据是完全平方公式a2+b2+2ab=(a+b)2 。
3、通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
参考资料来源:百度百科-一元二次方程

一元二次方程怎么求根?

一元二次方程是形如 ax2 + bx + c = 0 的方程,其中 a、b、c 是已知的实数常数,且 a ≠ 0。
一元二次方程的解即为其根,可以通过求解方程来找到根。一元二次方程的根的个数可能有三种情况:
1. 两个实数根:如果方程的判别式(b2 - 4ac)大于零,即 b2 - 4ac > 0,则方程有两个不相等的实数根。根的求解可以使用求根公式:
x = (-b ± √(b2 - 4ac)) / (2a)
其中 ± 表示两个根,一个取正号,一个取负号。
2. 一个实数根:如果方程的判别式等于零,即 b2 - 4ac = 0,则方程有一个实数根(重根)。根的求解公式同样适用,但此时 ± √(b2 - 4ac) 等于零,结果简化为:
x = -b / (2a)
3. 两个共轭复数根:如果方程的判别式小于零,即 b2 - 4ac < 0,则方程没有实数根,而是有两个共轭复数根。这时可以使用复数的表示形式来表示根。
需要注意的是,方程的根可能是实数,也可能是复数。要确定根的性质,需要计算方程的判别式,并根据判别式的结果进行判断。
一元二次方程的根的特征
1. 根的数量:一元二次方程的根可以有零个、一个或两个。这取决于方程的判别式(b^2 - 4ac)的符号。
★ 当判别式大于零(b2 - 4ac > 0)时,方程有两个不相等的实数根。
★ 当判别式等于零(b2 - 4ac = 0)时,方程有一个实数根(重根)。
★ 当判别式小于零(b2 - 4ac < 0)时,方程没有实数根,而是有两个共轭复数根。
2. 根的性质:一元二次方程的根可以是实数或复数。实数根是指在实数范围内存在的根,而复数根是指包含实部和虚部的复数。判别式可以帮助确定根的类型。
★ 当判别式大于零时,根是两个不相等的实数。
★ 当判别式等于零时,根是一个实数(重根)。
★ 当判别式小于零时,根是两个共轭复数。
3. 根的关系:如果一元二次方程有实数根,那么这两个根满足特定的关系。
★ 设方程的两个根分别为 x1 和 x2,则有 x1 + x2 = -b/a 和 x1 * x2 = c/a。
这些特征可以帮助我们了解一元二次方程的根的性质,进而应用它们来解决实际问题。通过对方程的判别式和根的关系进行分析,我们可以确定方程的解的类型,并利用这些特征进行计算和推导。
一元二次方程的根在数学和实际应用中有很多用途。以下是一些常见的应用场景:
1. 解决几何问题:一元二次方程的根可以用于解决与几何形状相关的问题,例如计算抛物线与坐标轴的交点、求解最值等。通过求解方程,可以确定几何图形的性质和特征。
2. 物理学:在物理学中,一元二次方程的根可用于计算运动物体的轨迹、抛射物的飞行时间、落地点等问题。例如,通过将运动方程建模为二次方程,可以利用方程的根来确定物体的位置和时间。
3. 工程和建模:在工程和建模领域,使用一元二次方程的根可以帮助解决各种问题。例如,在电路设计中,可以通过求解二次方程来计算电子元件的参数值或者分析电路的响应。
4. 经济学和金融学:在经济学和金融学中,一元二次方程的根可以用于分析经济模型、计算收益率、研究市场行为等。例如,通过求解二次方程可以确定成本、利润和价格之间的关系。
5. 数据分析和拟合:一元二次方程的根也常用于数据分析和曲线拟合。通过将数据拟合为二次方程,可以找到最佳的拟合曲线,从而进行预测、优化和决策。
这些只是一些常见的应用场景,实际上,一元二次方程的根在各个学科和领域都有广泛的应用。求解方程的根可以帮助我们理解问题的本质、预测结果和做出决策。
一元二次方程的根的例题
当给定一个具体的一元二次方程,我们可以求解其根。以下是一个求解一元二次方程根的例题:
例题:解方程 x2 - 5x + 6 = 0 的根。
解法:
1. 首先,观察方程的系数 a、b 和 c。方程中的 a = 1,b = -5,c = 6。
2. 然后,计算判别式 D = b2 - 4ac。代入系数的值,有 D = (-5)^2 - 4 * 1 * 6 = 25 - 24 = 1。
3. 根据判别式的值进行分类讨论:
☆ 当 D > 0 时,方程有两个不相等的实数根。
☆ 当 D = 0 时,方程有一个实数根(重根)。
☆ 当 D < 0 时,方程没有实数根,而是有两个共轭复数根。
4. 在这个例题中,判别式 D = 1 > 0,所以方程有两个不相等的实数根。
5. 使用求根公式 x = (-b ± √D) / (2a) 求解方程的根。代入系数和判别式的值,有:
x1 = (-(-5) + √1) / (2 * 1) = (5 + 1) / 2 = 3
x2 = (-(-5) - √1) / (2 * 1) = (5 - 1) / 2 = 2
6. 因此,方程 x^2 - 5x + 6 = 0 的根为 x1 = 3 和 x2 = 2。
通过解这个例题,我们得到一元二次方程的两个实数根。具体的解法根据判别式的值来确定根的类型,并应用求根公式进行计算。在实际问题中,可以根据给定的方程进行类似的求解过程。

一元二次方程最简单的解法

一元二次方程的解法有:直接开方法,配方法,十字相乘法,公式法。不能说那种方法最简单,只能说针对不同的一元二次方程用哪种方法最简单。关键是针对不同的题目快速找到最简单的解题方法。
我认为一元二次方程最简单的解法就是配方法,但这个方法有时候可能会行不通,我认为解题应该找解出来最正确的,算得又快还准的办法我认为就是求根法,算出来准确无误。
首选十字相乘法,最后选配方法,公式法不考虑
一元二次方程有四种解法:
1、直接开平方法;
2、配方法;
3、公式法;
4、因式分解法。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程的解法有一下几种:1.十字相乘法;2.配方法;3.求根公式法(这种方法万能),其实我觉得没有最简单的方法,只有最适合你自己的方法,熟练运用这几种方法,你才能快速准确的结题哟
人教版九年级数学上册一元二次方程不同解法
以爱教育孩子
08-31 20:49中小学教师
关注
在解一元二次方程时常用配方法,公式法和因式分解法,其中配方法和公式法适用于所有的一元二次方程,因式分解适合某些一元二次方程,且可以简化解题过程,解一元二次方程的基本思路是降次,即把二次方程降次为一次方程,下面这题我们试用三种方法解题,试比较哪种更容易。
题目:x(x-2)+x-2=0
一、用配方法,解题过程如下图:
二、用公式法,解题过程如下图
三、用因式分解法,解题过程如下图
通过以上三种方法解此题,可以看出公式法步骤较多,但学生喜欢用公式法,因为几乎不用思考太多,只要代入公式就可以!用因式分解法是最简单的,但是有个别学生看不出应该提取哪个公因式,这题还算是比较简单的,书中有道练习题更是难倒一些学生,请看下题如何用因式分解法解题。
题目:3x(2x+1)=4x+2
解题过程如下图
对于基础不太好的学生,还真看不出来提取哪个公因式,如果没有特别要求,也可以采用公式法解题,只是解题过程会复杂一些。