×

一元一次不等式教案,初中数学优秀教案设计范文

admin admin 发表于2024-01-14 17:19:08 浏览15 评论0

抢沙发发表评论

本文目录一览:

[八年级上册数学一元一次不等式教案] 八年级上册数学教案

  对于数学老师而言,做好教案,就是上好课的前提!为此,下面我就和大家介绍冀教版八年级上册数学一元一次不等式教案,希望对大家有帮助!
  冀教版八年级上册数学一元一次不等式教案
  教学目标:

  知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。

  过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。

  情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。.

  教材分析:

  本节教材首先让学生动手“做一做”解两个不等式;之后让“大家谈谈”解一元一次不等式与解一元一次方程的异同点;最后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。

  教学重点:

  1、含有分母的一元一次不等式的解法

  2、用不等式表达数量之间的不等关系

  3、确定不等式的整数解

  教学难点:

  1、解含有分母的一元一次不等式时,去分母这一部的准确性。

  2、不等式的整数解的确定

  教学流程:

  一、直接引入

  我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢?今天我们来探究一下。

  二、探究新知

  (一)解一元一次方程和解一元一次不等式的异同点

  1、出示问题,让学生板演

  找两名同学,分别解下面两个问题:

  (1)解方程: ﹦

  (2)解不等式:≤

  2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。

  3、师生交流。

  相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母——去括号——移项,合并同类项——化系数为1。

  不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。

  4、运用新知。

  将下列不等式中的分母化去:

  重点关注:①去分母的方法:不等式两边同时乘以各分母的最小公倍数;②特别要注意常数项和单项式一定也要乘。

  (二)用不等式表达数量之间的不等关系

  1、投影出示例2,学生思考解决方法。

  例2 当x在什么范围内取值时,代数式的值比的值大?

  2、师生交流。

  解题方法:先根据题意列出不等式,再解不等式。

  特别注意:要注意题目中的关键词所对应的不等号。如不小于、不大于、是负数、是非负数等。

  3、巩固应用。

  请根据下列描述列出不等式:

  (1)代数式5x+2是负数;

  (2)代数式x+20的值小于

  (3)代数式的值不大于

  (三)确定不等式的整数解

  1、投影出示例3,学生思考解决方法。

  例3 求不等式≥的正整数解.

  我们前面已经求出不等式≥的解集是x≤5,它的正整数解是什么呢?

  2、小组讨论

  3、师生交流:

  总结方法:可以借助数轴工具,确定不等式的正整数解,如:

  x≤5在数轴上表示为:

  容易看出x≤5的正整数解为x=1,2,3,4,5.

  重点强调:①要注意不等号是否有等于号;②注意题目所求的整数解类型,如:正整数解、负整数解、非负整数解、非正整数解、整数解。

  3、巩固应用。

  按要求回答下列问题:

  (1)x<3的正整数解是 ;

  (2)x>的负整数解是 ;

  (3)x≤4的非负整数解是 ;

  (4)-2.39的正整数解.

  能力测试:

  若x既满足不等式3x-4≤5,又满足不等式x+2>-3,试求出x的整数解.

  四、回顾总结

  学生谈本节课的收获,教师进行强调。

  课后反思

  本节 教学设计 有以下两方面的特点:

  一、集中精力,突破教学难点。

  如解含有分母的一元一次不等式,重点探究去分母这一步;用不等式表示数量之间的不等关系的例2,重点探究列不等式这一步;关于不等式的正整数解的例3,重点探究求出不等式的解集后,如何确定整数解。这样处理可以充分利用课堂时间,突破教学难点,提高课堂教学效率,

  二、合理运用教材,减轻师生的负担。

  本节课所选的习题决大多数是课本上的例题、习题,如:对于探究新知的第一个环节解一元一次方程和解一元一次不等式的异同点的巩固练习题是课本例2、例3的不等式,而在后面处理例2、例3时就不用从头开始解不等式,直奔重点。这样处理,既在一定程度上减轻了教师查找资料的负担,又避免了学生在课堂上重复做同一类型的习题,间学生有更多的时间去思考、去探究。

看了八年级上册数学一元一次不等式教案的人还看:

1.八年级上册数学不等式教案

2.八年级数学上册一元一次不等式的应用练习题

3.八年级数学上册一元一次不等式组练习题

4.初二数学一次函数与一元一次不等式 教学反思

5.初二数学辅导资料:一元一次不等式组

沪科版七年级下册数学教案:一元一次不等式

学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:一元一次不等式组的解法
学习难点:一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。

【预习】
1、 认真阅读教材34-35页内容
2、____________ _ 叫做一元一次不等式组。
______ _______叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动
【例题分析】
例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】
不等式组解集口诀
“同大取大,同小取小,大小小大中间找,大大小小解不了”
一元一次不等式组解集四种类型如下表:
不等式组(a<b) 数轴表示 解 集 记忆口诀
(1)x>ax>b
x>b 同大取大
(2)x<ax<b
x<a 同小取小
(3)x>ax<b
a<x<b 大小取中
(4)x<ax>b
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为(  )
A.-1<x<2  B.-1<x≤2  C.x<-1  D.x≥2
3、不等式组 的解集在数轴上表示正确的是( )

A B C D
4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试
1.填空
(1)不等式组x>2x≥-1 的解集是_ __;
(2)不等式组x<-1x<-2 的解集 ;
(3)不等式组x<4x>1 的解集是__ __;
(4)不等式组x>5x<-4 解集是___ ___。
2、解下列不等式组,并在数轴上表示出来
(1)
四、应用与拓展
1、若不等式组 无解,则m的取值范围是 ____ _____.
五、数学日记

初一数学一元一次不等式组说课稿教案

以下是 为大家整理的初一数学一元一次不等式组说课稿教案的文章,供大家学习参考!
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用

一元一次不等式组的数学教案

  [学习目标]
  1.进一步巩固一元一次不等式组的解法
  2.会用一元一次不等式组解决有关的实际问题
  3.理解一元一次不等式组应用题的一般解题步骤
   [学习重点] 一元一次不等式组的应用
   [学习难点] 在实际问题中寻找不等关系,列出不等式组
  [学习过程]
  一、春耕(创设情境,导入新课)
  在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
  二、夏耘(师生互动,课堂探究)
  (一)提出问题,引发讨论
  当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
  例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?
  (二)导入知识,解释疑难
  1.教材内容讲解
  如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为15
  又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?
  2.探究活动
  把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的'长方形个数最多的办法呢?最多个数又是多少呢?
  三.秋收(归纳总结,知识回顾)
  1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
  2.双基练习
  1.已知方程组 有正整数解,则k的取值范围是_________.
  2.若不等式组 无解,求a的取值范围.
  3.当2(m-3)< 时,求关于x的不等式 >x-m的解集.
  4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?
  四.冬藏(创新提升)
  某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
  (1)用含x的代数式表示m.
  (2)求出该次活动中获赠顾客人数及所准备的礼品数

《一元一次不等式与一次函数》教案设计

   一、学生知识状况分析
  学生的知识技能基础:学生在前面已经学习过一次函数,会求一次函数的表达式和画一次函数的图象,在本章前面几节课中,又学习了一元一次不等式概念,具备了解一元一次不等式的基本技能;
  学生活动经验基础:在相关知识的学习过程中,学生已经利用一次函数和一元一次不等式解决了一些简单的现实问题,感受到了一次函数和一元一次不等式解决问题的必要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
   二、教学任务分析
  数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课属于八下第一章第五节《一元一次不等式与一次函数》第一课时内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。教科书基于学生对一元一次不等式和一次函数认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:
  1、了解一元一次不等式与一次函数的关系.
  2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较
  3、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
  4、训练大家能利用数学知识去解决实际问题的能力.
  5、体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
   三、教学过程分析
  本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:布置作业。
   第一环节:情境引入
   活动内容:
  上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?
  活动目的:以“旧”引“新”,由原有的知识为基础,探讨新的内容。
  活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛.
   第二环节:活动探究、合作学习
   活动内容:
  下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.
  1.导探激励
  作出函数y=2x-5的图象,观察图象回答下列问题.
  (1)x取哪些值时,2x-5=0? (3)x取哪些值时,2x-5<0?
  (2)x取哪些值时,2x-5>0? (4)x取哪些值时,2x-5>3?
   学生活动:讨论后回答。
   活动目的:通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。
  (1)当y=0时,2x-5=0,
  x= , 当x= 时,2x-5=0.
  (2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件,当y=0时,则有2x-5=0,解得x= .当x> 时,由y=2x-5可知 y>0.因此当x> 时,2x-5>0;
  (3)同理可知,当x< 时,有2x-5<0;
  (4)要使2x-5>3,也就是y=2x-5中的y大于3,那么过纵坐标为3的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(4,3),则当x>4时,有2x-5>3.
   活动效果:学生由讨论可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。
   2.想一想
   活动内容:
  如果y=-2x-5,那么当x取何值时,y>0?
  学生活动:在刚才讨论的基础上,学生尝试解决问题。
  活动目的:通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。
  首先要画出函数y=-2x-5的图象,如图:
  从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个y的值所对应的x的`值都在A点的左侧,即为小于-2.5的数,由-2x-5=0,得x=-2.5,所以当x取小于-2.5的值时,y>0。
   活动效果:通过完成这题进一步培养了学生的数形结合意识。
   3.达测深化
   活动内容: 先画出图象,然后讨论回答。
  兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
  (1)何时弟弟跑在哥哥前面?
  (2)何时哥哥跑在弟弟前面?
  (3)谁先跑过20 m?谁先跑过100 m?
  (4)你是怎样求解的?与同伴交流.
   活动目的:感知不等式、函数、方程的不同作用与内在联系。
  [解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得
  y1=4x y2=3x+9
  函数图象如图:
  从图象上来看:
  (1)当0<x<9时,弟弟跑在哥哥前面;
  (2)当x>9时,哥哥跑在弟弟前面;
  (3)弟弟先跑过20m,哥哥先跑过100m;
  (4)从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x的值小,说明用的时间就短.同理可知谁先跑过100 m.
   活动效果:绝大部分学生都能画出函数图象,并能借助函数图象完成上述问题。
   第三环节:运用巩固、练习提高
  1. 已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
  活动内容:让学生分小组交流后作出解答,教师进行点评。
  活动目的:一方面对上环节中解决此类问题的方法进行巩固,另一方面,让学生在合作学习的过程中进一步体验一元一次不等式与一次函数的图象之间的结合是解决此类问题核心所在.
  解:如图所示:
  当x取小于 的值时,有y1>y2.
  活动效果:学生在解答上述问题时,表现出极大的兴趣, 90%的学生能够顺利完成.
   第四环节:课时小结
   活动内容:
  本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式。
  活动目的:让学生通过自我反思性活动增强对相关知识和方法的理解水平。感受到数学的作用。
  第五环节:布置作业
  读一读 习题1.6 1、2
   四、教学反思
  1、 函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型。本节的目的就是通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。本节课的教学过程中应注意引导学生初步体会从整体中把握部分的思维方法,渗透函数、方程、不等式思想和数形结合等重要的数学思想,拓宽学生视野。相信学生并为学生提供充分展示自己的机会
  2、教学过程中要为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
  3、注意改进的方面:
  在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

初中数学教案模板范文

教案是教师对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面我整理了初中数学教案模板范文,仅供参考。

初中二元一次方程数学教案 一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程组及其解的概念。
难点:用列表尝试的方法求出方程组的解。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男*各几人吗?为什么?
(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比*多了2人。设男生x人,*y人.方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人.设该班男生x人,*y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解.
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验.]
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
一元一次不等式组教案模板 一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的.
二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.
三.不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3.我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。

初中数学优秀教案设计范文

教案是老师进行教学的重要道具,对教学有重要的作用,可以帮助老师更好地把控教学节奏。有了教案,老师可以更好地进行教学,提高自身的教学水平,更好地实现教学目标。优秀的教案设计对老师的帮助是非常大的,这里给大家分享一些优秀的教案设计,供大家参考。
初中数学平行线的判定教案设计
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好 文化 知识,才有解决实际问题的本领,从而对学生进行学习目的的 教育 .
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点?难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己 总结 完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的 逻辑思维 能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定 方法 ,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
初中数学优秀有理数的大小比较教案
一、背景知识
《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。
二、教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7   ②-6和-1  ③-6和-36  ④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
初中数学一元一次不等式组教案 范文
一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的.
二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.
三.不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。
初中数学优秀教案设计范文相关 文章 :
1. 初中数学优秀数轴教案范文模板
2. 初中七年级上册数学《整式》教案优质范文五篇
3. 七年级数学《整式》教案设计大全
4. 初中数学教案设计《分类数学教案》
5. 2020初一数学教学安排优质范文5篇
6. 初中七年级下册《实数》教案优质范文五篇
7. 初中数学个人教育工作总结优秀范文
8. 初中数学《分数的初步认识》教学设计
9. 初中七年级语文《春》优秀教案设计
10. 教案计划精选范文5篇最新集锦

拜求一次函数与一元一次不等式的说课稿

http://www.zhaojiaoan.com/soft/list.asp?classid=454
2008-07-27 09:25:43 初中数学说课稿 等边三角形说课稿[八年数学说课]
14.3.2等边三角形说课稿一、教材分析1、教材地位及作用等边三角形是八年级数学上册14.3.2第1课时的内容,主要内容是等边三角形的性质定理和判定定理以及判定定理的推理证明和初步应用。本教材是学生学习了轴对称图形和等腰三角形有关知识后学习的,本课学习不仅是学生进一步认识特殊的轴对称图形——等边三角形,更是今后证明角相等、线段相等的重要工具,在教材中处于非常...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-16 16:42:13 华师版八年级数学说课教案 在实验中寻找规律[八年数学说课]
在实验中寻找规律(说课教案)一、教材分析(一)教材的主要内容“在实验中寻找规律”是华师版教材八年级(上)第十五章“频率与机会”第一节内容。本节教材安排了抛掷一枚硬币,抛掷两枚硬币以及转盘这三个实验,希望学生通过动手实验和观察数据,发现不确定事件的发生并非完全没有规律可循,体会随着重复实验次数的增大,随机事件发生的频率将呈现逐渐稳定的趋势,可以由此来预测机会大...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-14 09:29:13 《最简二次根式》说课稿[八年数学说课]
八年级数学说课稿:最简二次根式各位专家,评委:大家好.很高兴能有机会参加这次活动,并能得到您的指导.我说课的题目是第十二章二次根式第六节的第二小节最简二次根式.下面,我就丛教学目标,教学的重点和难点,教学方法,教学手段,教学过程等方面进行说明.一、教学目标 1.使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式. 2.使学生掌握化简一个二次...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-14 09:19:02 《勾股定理》说课设计 苏科版八年级数学说课[八年数学说课]
苏科实验版八年级数学说课《2.1勾股定理(1)》说课设计一、教材分析1、教材的地位与作用《勾股定理》苏科版实验教科书数学八年级上册第二章的起始课,它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-06-28 09:18:24 《平行四边形的判别》说课教案[八年数学说课]
初二数学说课:《平行四边形的判别》说课教案一、教材分析1.从在教材中的地位与作用来看《平行四边形的判别》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-06-28 08:49:50 《黄金分割》说课 初二数学说课[八年数学说课]
《黄金分割》说课一、背景分析:分两点来阐述,首先是学习任务分析:就内容而言黄金分割既是线段的比、成比例线段的应用,同时也蕴含着丰富的文化价值,是密切数学与现实生活之间联系的重要内容。其核心概念是黄金分割,黄金分割点、黄金比。围绕核心,让学生体会知识的形成过程对学生学习新知识是十分必要的,给学生提供思考、探索、发现、创新的最大空间,可使学生在整个教学过程中始终...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-06-11 16:57:15 《四边形》说课设计[八年数学说课]
《四边形》说课设计教材:人教版初中《几何》第二册第四章第1节P122-124页(一)教学目的要求(1)使学生理解四边形的有关概念,掌握四边形内角和定义及其应用。(2)注意学生发散性思维及逆向性思维的训练。渗透类比、转化的数学思想方法。培养学生的抽象、概括能力,并注意渗透事物是相互联系的辩证唯物主义观点。(二)教学重点、难点重点是四边形内角和定理的证明;难点是...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 14:00:25 北师大版《分式的乘除法》说课设计[八年数学说课]
《分式的乘除法》——北师大版八年级下册数学说课一、教材分析(一)教材所处的地位及作用“分式的乘除法”是北师大版八年级下册第三章第二节的内容,本节课在学习了分式基本性质和因式分解的基础上进一步学习分式的乘除法,是为学习分式加减等作准备,具有承上启下的作用,在教材中处于重要的位置。(二)学情分析学生在前面学习了分式基本性质,因式分解,现在所学的乘除法是分式基本性...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 13:57:07 北师大版《探索三角形相似的条件》说课设计[八年数学说课]
《探索三角形相似的条件(1)》——北师大版八年级数学说课案例一、教材分析:1、教材内容:本节课是北师大版初中数学八年级下册第四章第六节“探索三角形相似的条件”第1课时的内容。2、教材地位与作用:它是在学生学习了全等三角形的有关内容后集中研究三角形相似的内容,是对三角形全等内容的进一步拓广和发展;在直观认识形状相同的图形基础上,探索和理解相似三角形的判定条件;...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 13:49:47 北师大版八年级数学说课设计 平方差公式[八年数学说课]
《运用公式法——平方差公式》说课教案一、教材分析:苏霍姆林斯基曾说过:“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。(一)教材的地位与作用。《运用公式法——平方差公式》是北师大版义务教育课程标准...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 13:45:32 北师数学八上《中位数和众数》的说课[八年数学说课]
《中位数和众数》的说课教材分析教材的地位和作用本节课是北师大版八年级数学上册第八章《数据的代表》中,第三节的内容.主要让学生认识数据统计中三个基本统计量,是一堂概念课,也是学生学会分析数据,作出决策的基础.本节内容是继平均数学习之后的后续内容,既是对前面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材.2.教学目标知识目标:(1...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 11:23:17 北师大版《关注三角形的外角》说课稿[八年数学说课]
《关注三角形的外角》说课稿——北师大版《数学》八年级下说课稿一、设计理念利用课本例题进行一题多变、一题多解,在教学过程中,启发学生根据习题间的联系进行分组讨论,引导学生进行思考,由浅到深,由易到难,让学生在已有的知识水平上经历探究、思索的过程,诱导他们正确解题、运用多种方法解题,拓展他们的思维,提高想象能力。为了完成这个设计理念,在本节课的教学方法上采用启发...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 10:24:43 北师版《梯形》说课稿 第一课时[八年数学说课]
梯形第一课时说课稿——北师大版数学八年级上册说课稿各位老师:大家好,今天我将从教材分析,教法、学法的选择,教学目标的确定,教学程序几个方面说明自已的教学设想。教材的地位与作用:在八年级上学期的第四章平行四边形其后我们与梯形不期而遇。以往经验告诉我许多学生认为梯形是平行四边形的一种,那么刚刚学过的平行四边形对马上要展开的梯形的学习有什么帮助?反之学了梯形对四边...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 10:00:26 《运用完全平方公式分解因式》说课稿(北师版)[八年数学说课]
《运用完全平方公式分解因式》说课稿——北师大版初二下册数学说课稿《运用完全平方公式分解因式》是新课标北师大版数学八年级下册第二章第三节第二课时内容。下面我将从教材分析、学法与教法、教学过程三方面来说明。一、教材分析:1、地位与作用:分解因式与数系中分解质因数类似,是代数中一种重要[color=White][/color]的恒等变形,它是在学生学习了整式运算的...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 09:56:47 北师大版八下《黄金分割的应用》说课稿[八年数学说课]
黄金分割的应用说课稿一、说教材:1、教材中的地位和作用《黄金分割》是北师大版8年级数学下册第四章《相似图形》第2节的内容。本章是继图形的全等之后集中研究图形形状的内容,它与前后有关几何部分的内容都有着密切的关系,是对图形全等内容的进一步拓广与发展。整个设计力图引导学生观察、分析生活现实和数学现实中的相似现象,总结图形相似的有关特征并自觉的应用到现实之中,逐步...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-09 15:48:26 《生活中的平移》说课稿 北师大版[八年数学说课]
《生活中的平移》说课稿——北师大版八年级数学说课稿各位评委,老师们:大家好!很高兴参加这次说课活动,这对我来说是一次难得的机会,深切盼望专家和评委对我的说课内容提出宝贵意见.今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》.下面,我从教材分析,教法与学法分析,教学过程分析,设计说明四个方面来谈谈我对这节课的教学设想.一,...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-09 15:46:50 《探索勾股定理》说课稿(北师大版)[八年数学说课]
北师数学八年《探索勾股定理》第一课时说课稿《探索勾股定理》第一课时说课稿(北师大版)课题:“探索勾股定理”第一课时一、教材分析(一)教材所处的地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第1节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-09 14:59:48 《黄金分割》说课.教学设计.教学反思(北师大版)[八年数学说课]
北师大版八年级数学(下)《4.2黄金分割》教学设计4.2黄金分割说课:黄金分割,是北师大版《数学》八年级下第四章第二节的内容,一课时。本节课的设计力图贯彻“自主参与、自主体验、自主构建”的教育理念和体现“数学教学主要是数学活动的教学”的教育思想。以下我就从教材分析、教学内容的选择以及设计思想、教法与学法,教学反思几个方面来介绍这堂课的说课内容。教材分析:一、...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-09 14:40:40 《平行四边形的判别》说课教案(北师大版)[八年数学说课]
北师大版数学教材八年级上册《平行四边形的判别》说课教案各位老师,大家好!我说课的内容是九年义务教育北师大版数学教材八年级上册第四章第二节《平行四边形的判别》,下面我从五个方面来汇报我是如何分析教材和设计教学过程的。一、教材分析1.从在教材中的地位与作用来看《平行四边形的判别》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-09 10:49:24 《平行四边形的性质》说课教案(北师大版)[八年数学说课]
平行四边形的性质说课教案一.说教材1.说课内容:北师大八年级上册第四章第一节《平行四边形的性质》。(P84-86)2.教材编写意图:四边形和三角形一样,也是基本的平面图形。在七年级下册“空间与图形”及八年级“平移与旋转”等有关知识的基础上,用已经掌握的几何事实和对图形初步观察和变化,操作等活动经验的基础上,探索并掌握平行四边形的基本性质。3.教学目标: ⑴...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
加油!!
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).
定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
一次函数与二元一次方程的关系
1.(1)以二元一次方程组ax+by=c的解为坐标的点组成的图象与一次函数
y=-a/bx+c/d的图象相同.
(2)二元一次方程组{a1x+b1y=c1,a2x+b2y=c2的解可以看作是两个一次函数
y=-a1/b1x+c1/d1和y=-a2/b2x+c2/d2的图象的交点.

一元一次不等式

一、等式及不等式
1、等式的概念:
  一般的,用符号“=”连接的式子叫做等式。   注意:等式的左右两边是代数式。
2、不等式的概念:
  一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。不等式中可以含有未知数,也可以不含)
3、 不等式的性质:
  (1)不等式的两边都加上(或减去)同一个数(或式子)(0除外),不等号的方向不变。   (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。   (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。   (4)不等式的两边都乘以0,不等号变等号。   数字语言简洁表达不等式的性质——   【1.性质1:如果a>b,那么a±c>b±c)】   【2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)】   【3.性质3:如果a>b,c<0,那么ac编辑本段二、一元一次不等式
1、定义:
  用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
2、解一元一次不等式的一般顺序:
  (1)去分母 (运用不等式性质2、3)   (2)去括号   (3)移项 (运用不等式性质1)   (4)合并同类项。   (5)将未知数的系数化为1 (运用不等式性质2、3)   【(6)有些时候需要在数轴上表示不等式的解集】
3.不等式的解集:
  一个有未知数的不等式的所有解,组成这个不等式的解集。例如,不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有非零实数。求不等式解集的过程叫做不等式的解。也叫做解不等式。   2.一元一次不等式的解集   将不等式化为ax>b的形式   (1)若a>0,则解集为x>b/a   (2)若a<0,则解集为x5.一元一次不等式组:
  (1) 一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。   (2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。   1. 代数式大小的比较:   (1) 利用数轴法;   (2) 直接比较法;   (3) 差值比较法;   (4) 商值比较法;   (5) 利用特殊比较法。(在涉及代数式的比较时,还要适当的使用分类讨论法)
6. 不等式解集的表示方法:
  (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。   (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
7. 一元一次不等式与一次函数的综合运用:
  一般先求出函数表达式,再化简不等式求解。
8. 解一元一次不等式组的步骤:
  (1) 求出每个不等式的解集;   (2) 求出每个不等式的解集的公共部分;(一般利用数轴)   (3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
9. 几种常见的不等式组的解集:
  如果aa} {x>b}的解集是:x>b   (2) 关于x不等式组{xa} {xb}的解集是空集。   以上取解集的方法可归纳为:两大取大,两小取小,大小小大取中间,大大小小取空集
10. 几种特殊的不等式组的解集:
  (1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a   (2) 关于x不等式(组):{x>a} {x11. 一元一次不等式与一元一次方程
  不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系,相同点:二者都是只含有一个未知数,未知数的次数都是1,左右两边都是整式
编辑本段一元一次不等式教案
  例3 解下列不等式组   2x-1<4x+13;   2(5x+3)≤x-3(1-2x).   解 (1)2x-1<4x+13,   2x-4x<13+1,   -2x<14,   x>-7.   (2)2(5x+3)≤x-3(1-2x),   10x+6≤x-3+6x,   3x≤-9,   x≤-3.   例4 当x取何值时,代数式的值比的值大1?   解 根据题意,得->1,   2(x+4)-3(3x-1)>6,   2x+8-9x+3>6,   -7x+11>6,   -7x>-5,   得 x<7分之5   所以,当x取小于7分之5的任何数时,代数式的值比的值大1   练习   1.下列不等式中,是一元一次不等式的有[ ]   A.3x(x+5)>3x2+7;   B.x2≥0;   C.xy-2<3;   D.x+y>5.   2.不等式6x+8>3x+8的解是[ ]   3.3x-7≥4x-4的解是[ ]   A.x≥3;   B.x≤3;   C.x≥-3;   D.x≤-3.   4.若|m-5|=5-m,则m的取值范围是[ ]   A.m>5;   B.m≥5;   C.m<5;   D.m≤5.   [ ]   A.x>15;   B.x≥15;   C.x<15;   D.x≤15.   6.若关于x的方程3x+3k=2的解是正数,则k的值为[ ]   C.k为任何实数;   D.以上答案都不对.   7.下列说法正确的是[ ]   A.x=2是不等式3x>5的一个解;   B.x=2是不等式3x>5的解;   C.x=2是不等式3x>5的唯一解;   D.x=2不是不等式3x>5的解.   [ ]   A.y>0;   B.y<0;   C.y=0;   D.以上都不对.   9.下列说法错误的是[ ]   D.x<3的正数解有有限个.   [ ]   A.x≤4;   B.x≥4;   [ ]   A.x<-2;   B.x>-2;   D.x<2;   D.x>2,   [ ]   A.大于2的整数;   B.不小于2的整数;   D.2;   D.x≥3.   [ ]   A.无数个;   B.0和1;   C.1;   D.以上都不对.   [ ]   A.x>1;   B.x≤1;   C.x≥1;   D.x.>1.   [ ]   A.2x-3x-3<6,-x<9,x>-9;   B.2x-3x+3<6,-x<3,x>-3;   C.2x-3x+1<6,-x<5,x<-5;   D.2x-3x+3<1,-x<-2,x<2.   (二)解一元一次不等式   16.31.   26.3x-2(9-x)>3(7+2x)6x).   27.2(3x-3(4x+5)≤x-4(x-7)   28.2(x-1)>3(x-1)-x-5.   29.3[-2(y-7)]≤4y.   31.15-(7+5x)≤+(5-3x).   对于任意两个实数a,b,关系式是a>b,a=b,a0时,有a>b,   当a-b=0时,有a=b:   当a-b<0时,有a编辑本段一元一次不等式应用题:
  1、一本英语书98页,张力读了7天(一周)还没读完,而小明不到一周就读完了,小明平均每天比张力多读3页,问小明每天读多少页?   解:设张力每天读x页,则小明读(x+3)页,由题意,得:   {98/x>7   {98/(x+3)<7   解得:11

数学一元一次不等式怎么解?

一、等式及不等式
1、等式的概念:
一般的,用符号“=”连接的式子叫做等式。
注意:等式的左右两边是代数式。
2、不等式的概念:
一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。 不等式中可以含有未知数,也可以不含)
3、 不等式的性质:
(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(4)不等式的两边都乘以0,不等号变等号。
不等式的基本性质(字母表示)
1.性质1:如果a>b,那么a±c>b±c
2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)
3.性质3:如果a>b,c<0,那么ac编辑本段
二、一元一次不等式
1、定义:
用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
2、解一元一次不等式的一般方法顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项。
(5)将未知数的系数化为1 (运用不等式性质2、3)
【(6)有些时候需要在数轴上表示不等式的解集】
3.不等式的解集:
一个有未知数的不等式的所有解,组成这个不等式的解集。例如,不等式x-5≤-1的解集为x≤4;不等式x>0的解集是所有非零实数。求不等式解集的过程叫做不等式的解。
2.一元一次不等式的解集
将不等式化为ax>b的形式
(1)若a>0,则解集为x>b/a
(2)若a<0,则解集为x4.数轴:
规定原点,方向,单位刻度的直线叫做数轴。
5.一元一次不等式组:
(1) 一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。
(2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。
1. 代数式大小的比较:
(1) 利用数轴法;
(2) 直接比较法;
(3) 差值比较法;
(4) 商值比较法;
(5) 利用特殊比较法。(在涉及代数式的比较时,还要适当的使用分类讨论法)
6. 不等式解集的表示方法:
(1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。
(2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
7. 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
8. 解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
9. 几种常见的不等式组的解集:
(1) 关于x不等式组{x>a} {x>b}的解集是:x>b
(2) 关于x不等式组{xa
(3) 关于x不等式组{x>a} {x (4) 关于x不等式组{xb}的解集是空集。
10. 几种特殊的不等式组的解集:
(1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a
(2) 关于x不等式(组):{x>a} {x编辑本段
一元一次不等式教案
例3 解下列不等式,:
2x-1<4x+13;
2(5x+3)≤x-3(1-2x).
解 (1)2x-1<4x+13,
2x-4x<13+1,
-2x<14,
x>-7.
(2)2(5x+3)≤x-3(1-2x),
10x+6≤x-3+6x,
3x≤-9,
x≤-3.
例4 当x取何值时,代数式的值比的值大1?
解 根据题意,得->1,
2(x+4)-3(3x-1)>6,
2x+8-9x+3>6,
-7x+11>6,
-7x>-5,
得 x<7分之5
所以,当x取小于7分之5的任何数时,代数式的值比的值大1
练习
1.下列不等式中,是一元一次不等式的有[ ]
A.3x(x+5)>3x2+7;
B.x2≥0;
C.xy-2<3;
D.x+y>5.
2.不等式6x+8>3x+8的解是[ ]
3.3x-7≥4x-4的解是[ ]
A.x≥3;
B.x≤3;
C.x≥-3;
D.x≤-3.
4.若|m-5|=5-m,则m的取值范围是[ ]
A.m>5;
B.m≥5;
C.m<5;
D.m≤5.
[ ]
A.x>15;
B.x≥15;
C.x<15;
D.x≤15.
6.若关于x的方程3x+3k=2的解是正数,则k的值为[ ]
C.k为任何实数;
D.以上答案都不对.
7.下列说法正确的是[ ]
A.x=2是不等式3x>5的一个解;
B.x=2是不等式3x>5的解;
C.x=2是不等式3x>5的唯一解;
D.x=2不是不等式3x>5的解.
[ ]
A.y>0;
B.y<0;
C.y=0;
D.以上都不对.
9.下列说法错误的是[ ]
D.x<3的正数解有有限个.
[ ]
A.x≤4;
B.x≥4;
[ ]
A.x<-2;
B.x>-2;
D.x<2;
D.x>2,
[ ]
A.大于2的整数;
B.不小于2的整数;
D.2;
D.x≥3.
[ ]
A.无数个;
B.0和1;
C.1;
D.以上都不对.
[ ]
A.x>1;
B.x≤1;
C.x≥1;
D.x.>1.
[ ]
A.2x-3x-3<6,-x<9,x>-9;
B.2x-3x+3<6,-x<3,x>-3;
C.2x-3x+1<6,-x<5,x<-5;
D.2x-3x+3<1,-x<-2,x<2.
(二)解一元一次不等式
16.31.
26.3x-2(9-x)>3(7+2x)6x).
27.2(3x-3(4x+5)≤x-4(x-7)
28.2(x-1)>3(x-1)-x-5.
29.3[-2(y-7)]≤4y.
31.15-(7+5x)≤+(5-3x).
对于任意两个实数a,b,关系式是a>b,a=b,a 并且规定:
当a-b>0时,有a>b,
当a-b=0时,有a=b:
当a-b<0时,有a<b.
编辑本段
一元一次不等式应用题:
1、一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读3页,张力每天读多少页?
解:设张力每天读x页,则李永读(x+3)页,由题意,得:
{98/x>7
{98/(x+3)<7
解得:11 ∴张力每天读12或13页
2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人?
解:设学生有x人 ,由题意,得:
{3x+8-5(x-1)≥0
{3x+8-5(x-1)<3
解得:5 ∵x只能取整数
∴x=6
∴书本有:3×6+8=26(本)
3、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?
解:设每分钟多抽x吨,由题意,得:
1.1×30/22<1.1+x<1.1×30/20
解得:0.4 4、一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7650平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。)
5、在容器里有18摄示度的水6立方米,现在要把8立方米的水注入里面,使容器里混合的水的温度不低于30摄示度,且不高于36摄示度,求注入的8立方米的水的温度应该在什么范围?
6、有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?
7、一次考试共有25道选择题,做对一题得4分,做错一题减2分,不做得0分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?
8、某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?
9、某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
10、一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12个小时,这段江水流速为3千米/时,轮船往返的静水速度V不变,V满足什么条件?
希望对你有帮助,谢谢!!!!