×

一元二次方程求根公式例题,解一元二次方程的所有方法及例题?

admin admin 发表于2023-12-21 17:25:48 浏览15 评论0

抢沙发发表评论

本文目录一览:

一元二次方程怎么求根?

一元二次方程是形如 ax2 + bx + c = 0 的方程,其中 a、b、c 是已知的实数常数,且 a ≠ 0。
一元二次方程的解即为其根,可以通过求解方程来找到根。一元二次方程的根的个数可能有三种情况:
1. 两个实数根:如果方程的判别式(b2 - 4ac)大于零,即 b2 - 4ac > 0,则方程有两个不相等的实数根。根的求解可以使用求根公式:
x = (-b ± √(b2 - 4ac)) / (2a)
其中 ± 表示两个根,一个取正号,一个取负号。
2. 一个实数根:如果方程的判别式等于零,即 b2 - 4ac = 0,则方程有一个实数根(重根)。根的求解公式同样适用,但此时 ± √(b2 - 4ac) 等于零,结果简化为:
x = -b / (2a)
3. 两个共轭复数根:如果方程的判别式小于零,即 b2 - 4ac < 0,则方程没有实数根,而是有两个共轭复数根。这时可以使用复数的表示形式来表示根。
需要注意的是,方程的根可能是实数,也可能是复数。要确定根的性质,需要计算方程的判别式,并根据判别式的结果进行判断。
一元二次方程的根的特征
1. 根的数量:一元二次方程的根可以有零个、一个或两个。这取决于方程的判别式(b^2 - 4ac)的符号。
★ 当判别式大于零(b2 - 4ac > 0)时,方程有两个不相等的实数根。
★ 当判别式等于零(b2 - 4ac = 0)时,方程有一个实数根(重根)。
★ 当判别式小于零(b2 - 4ac < 0)时,方程没有实数根,而是有两个共轭复数根。
2. 根的性质:一元二次方程的根可以是实数或复数。实数根是指在实数范围内存在的根,而复数根是指包含实部和虚部的复数。判别式可以帮助确定根的类型。
★ 当判别式大于零时,根是两个不相等的实数。
★ 当判别式等于零时,根是一个实数(重根)。
★ 当判别式小于零时,根是两个共轭复数。
3. 根的关系:如果一元二次方程有实数根,那么这两个根满足特定的关系。
★ 设方程的两个根分别为 x1 和 x2,则有 x1 + x2 = -b/a 和 x1 * x2 = c/a。
这些特征可以帮助我们了解一元二次方程的根的性质,进而应用它们来解决实际问题。通过对方程的判别式和根的关系进行分析,我们可以确定方程的解的类型,并利用这些特征进行计算和推导。
一元二次方程的根在数学和实际应用中有很多用途。以下是一些常见的应用场景:
1. 解决几何问题:一元二次方程的根可以用于解决与几何形状相关的问题,例如计算抛物线与坐标轴的交点、求解最值等。通过求解方程,可以确定几何图形的性质和特征。
2. 物理学:在物理学中,一元二次方程的根可用于计算运动物体的轨迹、抛射物的飞行时间、落地点等问题。例如,通过将运动方程建模为二次方程,可以利用方程的根来确定物体的位置和时间。
3. 工程和建模:在工程和建模领域,使用一元二次方程的根可以帮助解决各种问题。例如,在电路设计中,可以通过求解二次方程来计算电子元件的参数值或者分析电路的响应。
4. 经济学和金融学:在经济学和金融学中,一元二次方程的根可以用于分析经济模型、计算收益率、研究市场行为等。例如,通过求解二次方程可以确定成本、利润和价格之间的关系。
5. 数据分析和拟合:一元二次方程的根也常用于数据分析和曲线拟合。通过将数据拟合为二次方程,可以找到最佳的拟合曲线,从而进行预测、优化和决策。
这些只是一些常见的应用场景,实际上,一元二次方程的根在各个学科和领域都有广泛的应用。求解方程的根可以帮助我们理解问题的本质、预测结果和做出决策。
一元二次方程的根的例题
当给定一个具体的一元二次方程,我们可以求解其根。以下是一个求解一元二次方程根的例题:
例题:解方程 x2 - 5x + 6 = 0 的根。
解法:
1. 首先,观察方程的系数 a、b 和 c。方程中的 a = 1,b = -5,c = 6。
2. 然后,计算判别式 D = b2 - 4ac。代入系数的值,有 D = (-5)^2 - 4 * 1 * 6 = 25 - 24 = 1。
3. 根据判别式的值进行分类讨论:
☆ 当 D > 0 时,方程有两个不相等的实数根。
☆ 当 D = 0 时,方程有一个实数根(重根)。
☆ 当 D < 0 时,方程没有实数根,而是有两个共轭复数根。
4. 在这个例题中,判别式 D = 1 > 0,所以方程有两个不相等的实数根。
5. 使用求根公式 x = (-b ± √D) / (2a) 求解方程的根。代入系数和判别式的值,有:
x1 = (-(-5) + √1) / (2 * 1) = (5 + 1) / 2 = 3
x2 = (-(-5) - √1) / (2 * 1) = (5 - 1) / 2 = 2
6. 因此,方程 x^2 - 5x + 6 = 0 的根为 x1 = 3 和 x2 = 2。
通过解这个例题,我们得到一元二次方程的两个实数根。具体的解法根据判别式的值来确定根的类型,并应用求根公式进行计算。在实际问题中,可以根据给定的方程进行类似的求解过程。

一元二次方程的求根公式是什么?

首先对方程两边求一阶导数,得到:
$$2x+y+xy'+3y^2y'=0$$
整理后,可以得到一阶导数 $y'$ 的表达式:
$$y'=\frac{-2x-y}{x+3y^2}$$
再对上式两边求一阶导数,得到:
$$y''=\frac{2(x+3y^2)-(-2x-y)(1+6yy')}{(x+3y^2)^2}$$
将 $x=1$ 代入上式,得到:
$$y'(1)=\frac{-2-1}{1+3y^2(1)}=-1$$
将 $x=1$ 和 $y'(1)=-1$ 代入 $y''$ 的表达式中,可以得到:
$$y''(1)=\frac{2(1+3y^2)-(-2-1)(1+6y(-1))}{(1+3y^2)^2}=\frac{5+18y+24y^2}{(1+3y^2)^2}$$
因此,$y''(1)=\frac{5+18y+24y^2}{(1+3y^2)^2}$。

一元二次方程求根公式计算公式

一元二次方程求根公式计算公式如下:
一元二次方程求根公式是x=[-b±√(b^2-4ac)]/2a,标准形式为:ax2+bx+c=0(a≠0)。
一元二次方程求根公式:
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a。
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a。
只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax2+bx+c=0(a≠0)其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
扩展资料1:
二元一次方程没有求根公式。
一元二次方程有求根公式:设ax2+bx+c=0(a≠0),判别式△=b2﹣4ac
x1,2=(﹣b±√△)/(2a)
1、△>0时,不相等的两个实根;
2、△=0时,相等的两个实根;
3、△<0时,一对共轭复根。
拓展介绍2:
公式法是解一元二次方程的一种方法,也指套用公式计算某事物。
另外还有配方法、十字相乘法、直接开平方法与分解因式法等解方程的方法。公式表达了用配方法解一般的一元二次方程的结果。
根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。

解一元二次方程的所有方法及例题?

一元二次方程的解法有如下几种:
第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式
例1:X^2-4X+3=0
本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。
例2:X^2-8X+16=0
本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同)
例3:X^2-9=0
本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。
例4:X^2-5X=0
本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5
第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程:
X^2+2X-3=0
第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。
第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。
还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。
最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。
定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a
举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。

一元二次方程的根怎么求?

能直接开平方的直接开平方,不能的分解因式,让各因式等于零,十字相乘法也是因式分解,不能因式分解的可以配成完全平方再开方,以上方法都不行的用公式法,就是ax^2十bx+c=0(a≠0)当b^2一4ac≥0时两根为x=(一b士√(b^2一4ac))/2a
一元二次求根公式为x=(-b±√(b^2-4ac))/(2a)。
解:对于一元二次方程,用求根公式求解的步骤如下。
1、把一元二次方程化简为一元二次方程的一般形式,即ax^2+bx+c=0(其中a≠0)。
2、求出判别式△=b^2-4ac的值,判断该方程根的情况。
若△>0,该方程有两个不相等的实数。若△=0,该方程有两个相等的实数根。若△<0,那么该方程没有实数根。
3、然后根据求根公式x=(-b±√(b^2-4ac))/(2a)进行计算,求出该一元二方程的解。
扩展资料:
1、一元二次方程的求解方法
(1)求根公式法
对于一元二次方程ax^2+bx+c=0(a≠0),可根据求根公式x=(-b±√(b^2-4ac))/(2a)进行求解。
(2)因式分解法
首先对方程进行移项,使方程的右边化为零,然后将方程的左边转化为两个一元一次方程的乘积,最后令每个因式分别为零分别求出x的值。x的值就是方程的解。
(3)开平方法
如果一元二次方程是x^2=p或者(mx+n)^2=p(p≥0)形式,则可采用直接开平方法解一元二次方程。可得x=±√p,或者mx+n=±√p。
2、一元二次方程的形式
(1)一般形式
一元二次方程的一般形式为ax^2+bx+c=0,其中a≠0,ax^2为二次项,bx为一次项,c为常数项。
(2)变形式
一元二次方程的变形式有ax^2+bx=0,ax^2+c=0。
(3)配方式
参考资料来源:百度百科-一元二次方程

一元二次方程求根公式是什么?

△小于0,求根公式没有变化,只是根号里面是个负数,开方出来就是虚数。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
用配方法解一元二次方程的步骤:
①把原方程化为一般形式。
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。
③方程两边同时加上一次项系数一半的平方。
④把左边配成一个完全平方式,右边化为一个常数。
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

一元二次方程的求根公式是什么?

一元二次方程都可以化成ax2+bx+c=0(a≠0)的形式,它的求根公式为:
判别式为:△=b2-4ac。
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根;
当△<时,方程无实数根。
一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a。
一元二次方程的一般形式:ax2+bx+c=0(a≠0)
折叠变形式:ax2+bx=0(a、b是实数,a≠0); ax2+c=0(a、c是实数,a≠0); ax2=0(a是实数,a≠0)。
扩展资料
一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。
一元二次方程成立的条件:
①等号两边都是整式。方程中如果有分母,且未知数在分母上,这个方程不是一元二次方程;方程中如果有根号,且未知数在根号内,也不是一元二次方程。
②只含有一个未知数。
③未知数项的最高次数是2。
参考资料来源:百度百科—一元二次方程

一元二次方程的四种解法例题和过程和方法

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
[例题]
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。

一元二次方程的求根公式是什么?

求根公式如下:
a为二次项系数,b为一次项系数,c是常数。
一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系数直接把根表示出来的公式。这个公式早在公元9世纪由中亚细亚的阿尔·花拉子模给出。
拓展知识:
虽然阿拉伯人在九世纪,就掌握了求解一元二次方程的方法。
但一元二次方程最为重要的理论,是由法国数学家韦达建立的,他在《论方程的识别与订正》中讨论了根和方程的系数之间的关系,这一重要结果也被命名为韦达定理。
一元二次方程的求根公式
要讨论任意方程的性质,首先我们需要一个对所有方程都能使用的解法。
对于一元二次方程,我们只需要先把对应的二次函数一般式转化成顶点式,再开平方求解:
其中 Δ决定了方程能否顺利完成开平方的运算,被称为根的判别式。
如果 Δ>0 ,那么我们就能顺利开平方,计算出x的两个解,也可以叫两个根。
而如果 Δ<0 ,我们不能对负数开平方,方程在实数范围内无解。
特别地, Δ=0 时,我们说方程的两个解大小一样,叫做重根。
韦达定理的逆定理
如果我们有一元二次方程,可以通过韦达定理求出两个根的和与乘积。
那么反过来,如果我们知道两个根的和与乘积,就可以构造出对应的一元二次方程并求解。
人们思考高次多项式是否和二次多项式之间有某种联系。
对于有n个根的n次有理多项式,一定能因式分解为一堆一次或二次有理多项式的乘积,即一个有理根对应一个一次多项式,一对无理根对应一个二次多项式。
进一步利用复数解决无实根的情况,可以证明,n次多项式一定能因式分解为一堆一次或二次多项式的乘积,即一个实根对应一个一次多项式,一对复根对应一个二次多项式。

一元二次方程的实数根如何求?

当方程ax^2十bx十c=0(a≠0)中b^2一4ac≥0时方程根为x=(一b土√(b^2一4ac))/2a
△的公式与求根公式推导是-b±√b2-4ac/2a,一元二次方程的表达式是ax2+bx+c=0(a,b,c都是常数)当b2-4ac>0时,有两个不相等的实数根。当b2-4ac=0时,有两个相等的实数根。
这时可以使用上述求根公式求根。当b2-4ac<0,没有实数根。 对于方程:ax2+bx+c=0:b2-4ac叫做根的判别式。1、求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。

注意:当△≥0时,方程有实数根。2、若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 3、以a和b为根的一元二次方程是x2-(a+b)x+ab=0。