×

二元一次方程组详细步骤,二元一次方程组怎么解 详细过程

admin admin 发表于2024-01-27 18:47:50 浏览14 评论0

抢沙发发表评论

本文目录一览:

二元一次方程组有哪些解法

二元一次方程,是指有两个未知数,并且未知数的指数是一次的方程,由两个二元一次方程组成的,就是二元一次方程组。
解二元一次方程组的思路,主要是消元,就是把未知数变为一个,其中,代入消元法和加减消元法是最常用的解题方法。
一:代入消元法
用代入消元法解二元一次方程组的一般步骤
(1)在方程组中选一个系数比较简单的方程,将这 个方程变形,用含一个未知数的代数式表示另一个未 知数;
(2)将这个关系式代入另一个方程,消去一个未知 数,得到一个一元一次方程;
(3)解这个一元一-次方程,求得一个未知数的值;
(4)将这个求得的未知数的值再代入关系式,求出 另一个未知数的值;
(5)写出方程组的解.
代入消元法需要注意的地方:
(1)当方程组含有用一个未知数表示另一个未知数 关系式时,用代入法比较简单;
(2)若方程组中未知数的系数为1(或一1),选择系 为1(或一1)的方程进行变形,用代入法也比较简便;(3)如果未知数系数的绝对值不是1,就选择未知数 数的绝对值最小的方程进行变形;
(4)将变形后的方程代入没有变形的方程中,不能代入 原方程。
二:加减消元法
用加减法解二元一一次方程组的一 般步骤
(1)确定消元对象,并把它的系数化成相等或互为相反数的数;
(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值;
(5)写出方程组的解.
加减消元法需要注意的地方
(1)当方程组中的两个方程有某个未知数的系数相同或互为相反数时,用加减消元法比较简便;
(2)若两个方程中同一个未知数的系数成倍数关系,可利用等式性质将其转化成(1)的类型,再选择加减消元法;
(3)若两个方程中同一个未知数系数的绝对值都不相等,则应选出一组系数(选最小公倍数较小的一组系教),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公.倍数),再使用加减消元法。
除此之外,还有整体消元法,对于比较复杂的二元一次方程组,有规律的,可以通过换元,把相同的式子看作一个整体来解。

怎样用配方法解二元一次方程组?

用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
扩展资料:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2 的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2 。
例分解因式:x2-4x-12
解:x2-4x-12=x2-4x+4-4-12
=(x-2)2-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x2+6x-3的顶点坐标。
解:y=3(x2+2x-1)=3(x2+2x+1-1-1)=3(x+1)2-6
所以这条抛物线的顶点坐标为(-1,-6)
参考资料来源:百度百科——配方法

二元一次方程怎么解 详细过程

二元一次方程怎么解 详细过程如下:
1、整体代入法:整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入。
2、换元法:换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解,换元有一定的技巧性。
3、直接加减法:直接加减法有别于课本中的加减消元法,它通过将方程组中的方程相加减后把较繁的题目转化得相对简单。
4、消常数项法:可将两式消去常数项,直接得到图片与图片的关系式,而后代入消元。
5、相乘保留法:去分母时,如果把两数相乘得出结果,不仅数值变大,而且给下面的解题过程带来麻烦,所以有时我们暂时保留相乘的形式。
6、科学记数法:当方程组中出现比较大的数字时,可用科学记数法简写。
7、系数化整法:若方程组中含有小数系数,一般要将小数系数化为整数,便于运算。
8、对称法:这个方程组是对称方程组,其特点是把某一个方程中的x,y互换即可得到另一个方程。
9、拆数法:我们可以有目的地将常数项进行变形,通过观察得出方程组的解。
解二元一次方程的注意事项包括:
1、观察方程:仔细观察方程形式,确保其为二元一次方程。
2、化简方程:将方程中的常数项移动到等号右边,并把同类项合并,化简方程。
3、选择求解方法:根据实际情况选择适当的求解方法,如代入法、消元法等。
4、检验答案:将得到的解代入原方程中检验,确保方程成立。
5、注意特殊情况:有些方程可能存在无解或者有无数个解的情况,需要注意判断。
在解题过程中,需要注意符号的运算和变换,避免出现计算错误。另外,还要注意解题思路的清晰性和逻辑性,以及对题目的理解和分析能力。

二元一次方程所有解法,详细步骤

代入消元法
概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.[3]
加减消元法
概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[4]
顺序消元法
“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
图像法
二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的交点坐标即二元一次方程组的解。
代入消元法
代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,
求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).
加减消元法
加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,
求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)
扩展解法:
顺序消元法
“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。[6]
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
设参数法
图像法
解向量法

解二元一次方程的步骤

解二元一次方程的步骤如下:
认识二元一次方程组的概念:一些把简单实际的问题中的数量关系,用二元一次方程组的形式来计算,学会用含有其中一个未知数的代数式表示另一个的方法,成立于一元一次方程之上。
加减法解二元一次方程组的步骤:
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式。
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法)。
③解这个一元一次方程,求出未知数的值。
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值。
对二元一次方程的解的理解应注意以下几点:
①一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值。
②二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解。
③在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解。

解二元一次方程组的步骤

解二元一次方程组的步骤有两种方法:代入消元法和加减消元法。
代入消元法:
用代入消元法的一般步骤是:
1、选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
2、将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3、解这个一元一次方程,求出 x 或 y 值;
4、将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组 :x+y=5①
6x+13y=89②
解:由①得x=5-y③
把③代入②,得6(5-y)+13y=89。
得 y=59/7。
把y=59/7代入③,得x=5-59/7。
得x=-24/7。
∴ x=-24/7,y=59/7为方程组的解。
加减消元法:
1、在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
2、在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
3、解这个一元一次方程;
4、将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
例:解方程组:
x+y=9①
x-y=5②
解: ①+②
得: 2x=14。
∴x=7。
把x=7代入①
得: 7+y=9。
∴y=2。
∴方程组的解是x=7,y=2。
定义:
方程两边都是整式,含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程。使方程左右两边相等的未知数的值叫作方程的解。
你能区分这些方程吗?
(二元一次方程);(一元一次方程);(一元二次方程);(二元二次方程)。
对二元一次方程概念的理解应注意以下几点:
1.等号两边的代数式是否是整式;
2.在方程中“元”是指未知数,‘二元’是指方程中含有两个不同的未知数(x),3.未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1。
解:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解。

二元一次解方程步骤

二元一次解方程步骤如下:
在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解。1. 代入消元法将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。这种解方程组的方法叫做代入消元法,简称代入法。
2. 图像法二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的交点坐标即二元一次方程组的解。3. 换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,使非标准型问题标准化、复杂问题简单化,变得容易处理。
扩展资料:
解方程的注意事项
解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。
若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。

二元一次方程组怎么解 详细过程

二元一次方程组的解法如下:代入消元法。
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤:
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,
求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).
拓展资料:
认识二元一次方程组的概念:一些把简单实际的问题中的数量关系,用二元一次方程组的形式来计算,学会用含有其中一个未知数的代数式表示另一个的方法,成立于一元一次方程之上。

解二元一次方程组的步骤

解二元一次方程组的步骤如下:
方程两边都是整式,含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.使方程左右两边相等的未知数的值叫做方程的解。5x+3y=75(二元一次方程);7x+1=8(一元一次方程);x2+4=8(一元二次方程);2x2-xy+6=9(二元二次方程)。
对二元一次方程概念的理解应注意以下几点:等号两边的代数式是否是整式;在方程中“元”是指未知数,“二元”是指方程中含有两个不同的未知数(x,y或x,z等);未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1。
解:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解。
对二元一次方程的解的理解应注意以下几点:一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值;二元一次方程的一个解是指使方程左右两边相等的一对未知数的值。
反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解;在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解。
注意点:二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解。
对二元一次方程组的理解应注意:方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起。怎样检验一组数值是不是某个二元一次方程组的解。
常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。