×

千禧年十大数学难题,千禧年数学七大难题是哪些?

admin admin 发表于2023-12-11 03:06:34 浏览10 评论0

抢沙发发表评论

本文目录一览:

千禧年七大数学难题是什么?

NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。
1、NP完全问题
例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫作满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢。
这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。
2、霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完好的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
3、庞加莱猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
在2002年11月和2003年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想。
在佩雷尔曼之后,先后有2组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密西根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚。
2006年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。
4、黎曼假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式。
然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
黎曼假设之否认:
其实虽然因素数分布而起,但是却是一个歧途,因为伪素数及素数的普遍公式告诉我们,素数与伪素数由它们的变量集决定的。具体参见伪素数及素数词条。
5、杨-米尔斯存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。
特别是被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6、纳卫尔-斯托可方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7、BSD猜想
数学家总是被诸如,那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。
当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。
值得一提的是,杨-米尔斯存在性和质量间隔这个问题中的杨,就是杨振宁:
足见杨振宁在科学界的地位。在杨振宁的学习和研究过程中,数学大师刘熏宇先生对他产生了深刻的影响,他曾言:“有一位刘熏宇先生,他是一位数学家,写过很多通俗易懂和极其有趣的数学方面的文章,我记得,我读了他写的一个关于智力测试的文章。
才知道排列和奇偶排列这些极为重要的数学概念。”杨振宁先生推崇的这套数学书,就是下面这套数学三书,既通俗易懂又非常有趣,非常适合中小学生数学启蒙和数学思维的培养。
杨一米尔斯方程(Yang-Mills equation)是一个重要的微分方程,指杨一米尔斯作用量所确定的欧拉一拉格朗日方程。杨振宁,米尔斯的理论旨在描述基本粒子的行为使用这些非阿贝尔李群和统一的核心的电磁和弱力(即U(1)×SU(2))以及量子色动力学理论的强力(基于SU(3)),从而形成了对粒子物理标准模型理解的基础。

千禧年数学七大难题是哪些?

1,2,11,王,田
这七个难题的简单介绍如下:
1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。
2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。
3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。
4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。
5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。
6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。
7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。
20年过去,千禧年数学七大难题仍有六题未解
2000年5月,由美国富豪出资建立的克莱数学研究所,精心挑选了7大未解数学难题,无论是数学家还是流浪汉,任何人只要解决其中一题,都可以领走100万美金。美国希望通过悬赏的方式高效解决问题,对数学家而言,无疑也是一次扬名立万的机会。这七道题也被称为“千禧年数学七大难题”。
可如今20年过去了,七道难题还剩下六道未解。唯一已经被攻破的是曾经困扰人类近百年的“庞加莱猜想”。用大众化可以理解语言可以定义为:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球。
1904年,被誉为最后一个百科全书式的法国科学家庞加莱提出了这一猜想。庞加莱猜想”拓扑学的基础难题,如果破解了这个难题,人类对于宇宙和空间的认识将更上一个深度。

世界十大数学难题已经解决了哪些

世界十大数学难题(也称为“千禧年七大问题”)中已经有4个被证明或解决了。
1. Poincaré猜想:2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了Poincaré猜想的正确性。
2. 库默尔-兰格兰兹猜想:2018年,英国数学家Sir Andrew Wiles宣布他和他的团队解决了库默尔-兰格兰兹猜想。
3. Navier-Stokes方程组:虽然尚未得到完全解决,但对于Navier-Stokes方程组的一些特定情况已经进行了重要进展。例如,在三维空间内存在无穷多个初始条件下保持流体运动稳定性这一问题上取得了显著进展。
4. 黎曼假设:虽然尚未得到正式证明,但在过去几十年中已经提出并验证了许多方法来支持该假设。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

八:几何尺规作图问题 这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

十:四色猜想 1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

千禧年七大数学难题是什么?

千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。具体如下:
1、P=NP?
主条目:P/NP问题
尽管计算机极大地提高了人类的计算能力,仍有各种复杂的组合类或其它问题随规模的增大其复杂度也快速增大,通常我们认为计算机可以解决的问题只限于多项式时间内,即所需时间最多是问题规模的多项式函数.
有大量的问题,可以在确定型图灵机上用多项式时间求解;还有一些问题,虽然暂时没有能在确定型图灵机上用多项式时间求解的算法,但对于给定的可疑解可以在多项式时间内验证,那么,后者能否归并到前者内呢?
设想在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
更经典的例子是流动推销员问题,假设你要去3个城市去推销,要使走过的路程最短,需要对这3个城市进行排序。很简单,这一共有6种路线,对比一下就可以找到最短的路线了。但很明显只有3个城市不现实,假设10个城市呢,这一共有10!=3628800种路线!
假设你要算出每一条路线的长度,而计算一条路线花费1分钟,如果每天工作8小时,中间不休息,一星期工作5天,一年工作52个星期,这将要花费20多年!显然,这类计算会使用计算机。但由于阶乘数增长太快,连最先进的计算机也不堪重负。
P是否等于NP的问题,即能用多项式时间验证解的问题是否能在多项式时间内找出解,是计算机与算法方面的重大问题,它是斯蒂文·考克(StephenCook)于1971年陈述的。
2、霍奇猜想
主条目:霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。
最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
3、庞加莱猜想
主条目:庞加莱猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
俄罗斯数学家佩雷尔曼最终解决了三维庞加莱猜想。Clay数学研究所在2010年为此召开特别会议,为此猜想盖棺定论。
4、黎曼假设
主条目:黎曼假设
有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到。
素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。这点已经对于开始的1,500,000,000个解验证过。
证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明,
弗里曼·戴森(Freeman Dyson)在《数学世纪-过去100年间30个重大问题》的前言里写道他钟爱的培根式的梦想,寻找一维拟晶理论以及黎曼ζ函数之间的可能联系。如果黎曼假设成立,则在临界线上的ζ函数的零点按照定义是一个拟晶。
假如假设成立,ζ函数的零点具有一个傅里叶变换,它由在所有素数幂的对数处的质点构成,而不含别处的质点。这就提供了证明黎曼假设的一个可能方法。
法国数学家孔涅从美国数学家蒙哥马利(Montgomery)描述临界线上ζ函数零点之间间距的公式中得到启发,用量子物理学的思想证明黎曼假设。他写出一组方程,规定一个假设的量子混沌系统,把所有的素数作为它的组成部分。
他还证明,这个系统有着对应于临界线上所有ζ函数零点的能级。如果能证明这些与能级对应的零点外没有其他零点,也就证明了黎曼假设。
5、杨-米尔斯规范场存在性和质量间隔假设
主条目:杨-米尔斯存在性和质量间隔(规范场理论)
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。
特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量间隔”(mass gap)假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6、NS方程解的存在性与光滑性
主条目:navier stokes(纳维叶-斯托克斯存在性与光滑性)
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。
虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7、BSD猜想(贝赫和斯维讷通-戴尔猜想)
主条目:BSD猜想(贝赫和斯维讷通-戴尔猜想)
数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。
事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。
当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z⑴等于0,那么存在无限多个有理点(解),相反,如果z⑴不等于0,那么只存在有限多个这样的点。
以上内容参考 百度百科-千禧年大奖难题
是NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。其中庞加莱猜想已被解决。
数学难题可以是指那些历经长时间而仍未有解答/完全解答的数学问题。
古今以来,一些特意提出的数学难题有:平面几何三大难题、希尔伯特的23个问题、世界三大数学猜想、千禧年大奖难题等。
费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。
古希腊数学家丢番图写过一本著名的《算术》(Arithmetica),经历中世纪的愚昧黑暗到文艺复兴的时候,《算术》的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在《算术》的关于勾股数问题的页边上,写下猜想:xn+ yn =zn 是不可能的(这里n大于2;x,y,z,n都是非零整数)。
此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。
无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的n,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z,振动了世界,获得菲尔兹奖(数学界最高奖)。

千禧年大奖难题的介绍

千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。拟定这7个问题的数学家之一是怀尔斯,费马大定理这个有300多年历史的难题没被选入的唯一理由就是已经被他解决了。其他的专家,除了克磊促进会会长贾菲(Arthur Jaffe),还有阿蒂亚和在巴黎演讲的泰特,以及法国的孔涅(Alain Connes)和美国的威滕(Edward Witten)。根据克雷数学研究所订定的规则,任何一个猜想的解答,只要发表在数学期刊上,并经过两年的验证期,解决者就会被颁发一百万美元奖金。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个数学问题。

世界最难的20到数学题

千禧年大奖难题?是这个吗?
千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金1,000,000美元。 这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。
是希尔伯特提出的23个问题么?
下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况:
1. 连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。
2. 算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。
1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。
3. 两个等底等高四面体的体积相等问题
问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。
4. 两点间以直线为距离最短线问题 此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。
《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。
5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的 这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。
6.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。
7.某些数的无理性与超越性 1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0 ,1,和任意代数无理数β证明了αβ 的超越性。
8.素数问题 包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。
9.在任意数域中证明最一般的互反律 该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。
10. 丢番图方程的可解性 能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。
11. 系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。
12. 将阿贝尔域上的克罗克定理推广到任意的代数有理域上去 这一问题只有一些零星的结果,离彻底解决还相差很远。
13. 不可能用只有两个变数的函数解一般的七次方程 七次方程 的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。
14. 证明某类完备函数系的有限性 这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。
15. 舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。
16. 代数曲线和代数曲线面的拓扑问题 这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论 的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。
17. 半正定形式的平方和表示 一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。
18. 用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。
19. 正则变分问题的解是否一定解析 对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。
20. 一般边值问题 这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。
21. 具有给定单值群的线性微分方程解的存在性证明 已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。
22. 由自守函数构成的解析函数的单值化 它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。
23. 变分法的进一步发展出 这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。
这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。
参见百科:http://baike.baidu.com/view/5237.html?wtp=tt

十大数学猜想还有哪些未全部被证明

P(多项式算法)问题对NP(非多项式算法)问题,霍奇猜想,黎曼假设,杨-米尔斯存在性和质量缺口,纳维叶-斯托克斯方程,贝赫和斯维讷通-戴尔猜想。这样算来,除了高斯的几何尺规作图,美国阿佩尔与哈肯在1976年解开的四色问题,2006年美国汉密尔顿解开的庞加莱猜想,十大问题还有七个。所以有些人也把余下的称为千禧年七大数学难题。

世界上最难的数学题 世界七大数学难题难倒了全世界(3)


四:黎曼猜想 黎曼猜想由德国数学家波恩哈德·黎曼于1859年提出。它是数学中一个重要而又著名的未解决的问题(猜想界皇冠)。多年来它吸引了许多出色的数学家为之绞尽脑汁。1901年Helge von Koch指出,黎曼猜想与强条件的素数定理等价。现在已经验证了最初的1500000000个素数对这个定理都成立。但是是否所有的解对此定理都成立,至今尚无人给出证明。 黎曼猜想所以被认为是当代数学中一个重要的问题,主要是因为很多深入和重要的数学和物理结果都能在它成立的大前提下被证明。大部分数学家也相信黎曼猜想是正确的(约翰·恩瑟·李特尔伍德与塞尔伯格曾提出怀疑。塞尔伯格于晚年部分改变了他的怀疑立场。在1989年的一篇论文中,他猜测黎曼猜想对更广泛的一类函数也应当成立。)克雷数学研究所设立了$1000000美元的奖金给予第一个得出正确证明的人。
历史研究
黎曼1859年在他的论文中提及了这个著名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道ζ函数的不平凡零点对称地分布在直线s = ? + it上,以及他知道它所有的不平凡零点一定位于区域0 ≤ Re(s) ≤ 1中。 1896年,雅克·阿达马和Charles Jean de la Vallée-Poussin分别独立地证明了在直线Re(s) = 1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0 < Re(s) < 1上。这是素数定理第一个完整证明中很关键的一步。 1900年,大卫·希尔伯特将黎曼猜想包括在他著名的23条问题中,与哥德巴赫猜想一起组成了希尔伯特名单上的第8号问题。同时黎曼猜想也是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。希尔伯特曾说,如果他在沉睡1000年后醒来,他将问的第一个问题便是:黎曼猜想得到证明了吗?[1] 1914年,高德菲·哈罗德·哈代证明了有无限个零点在直线Re(s) = ?上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰·恩瑟·李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线Re(s) = ?上的平均密度。 近年来的工作主要集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)。
五:杨-米尔斯存在性与质量间隙 杨-米尔斯规范场论与质量间隙是理论物理中规范场论的一道基础问题,必须在数学上严格证明杨-米尔斯场论存在(即需符合构造性量子场论的标准),亦要证明它们有质量间隙,即模型所预测的最轻单粒子态为正质量。2000年,克雷数学研究所悬赏各一百万元的数学七大千禧年难题,其中一道题为杨-米尔斯规范场论同质量间隙。
背景 我们所知多数非凡(nontrivial)--即有相互作用--的4维量子场论皆有cutoff scale的有效场论。因多数模型的beta-函数是正的,似乎大多数这类模型皆有一支Landau pole,因我们完全不清楚它们有没有非凡紫外定点。故此,若每一scale上皆定义有这样的量子场论[注 1],它只可能为单纯的自由场论。 然而,有不可交换结构群的杨-米尔斯理论(无夸克)例外。它有一种性质称为渐近自由,指它有一单纯的紫外定点。因此,我们可以寄望它成为非凡的构造性(constructive)四维量子场模型。 不交换群Yang-Mills理论的色禁闭性已有符合理论物理严谨性的证明,但未有符合数理物理严谨性的证明[注 3]。基本上,换言之,过了QCD尺度(或者这里应称为禁闭尺度,因为无夸克),那些色荷粒子被色动力学的“流管”连着,所以粒子间有线性势(“弦”张力x长度)。所以胶子之类自由贺粒子不可能存在。若没有这些禁闭效应,我们应见到零质量的胶子;但因它们被禁闭,我们只见到不带色荷的胶子束绑态——胶波。凡胶波皆质量,所以我们期望质量间隙。 格点规范场论的结果令不少工作者相信,这个模型真的有禁闭现象(由Wilson圈的真空期望值的下降的“面积规律”(area law)看出),但这项结果还没有符合数学的严慬性。
上一页 2 /4 下一页

千禧年七大数学难题是什么?

这个每年是不固定的!