本文目录一览:
- 1、二元一次方程组怎么解?
- 2、如何解二元一次方程
- 3、如何解二元一次方程组?
- 4、二元一次方程的解法3种
- 5、二元一次方程组有哪些解法
- 6、二元一次方程组的解法
- 7、二元一次方程组的解法
- 8、二元一次方程组怎么解 详细过程
- 9、二元一次方程组解题方法
二元一次方程组怎么解?
首先,将第二个等式化简一下:
x + y = 2y + 3
然后,将第一个等式的 x 代入第二个等式中的 x + y,得到:
(2y + 1) + y = 2y + 3
化简得到:
y = 2
将 y = 2 代入第一个等式中,得到:
x - 2(2) = 1
解得:
x = 5
因此,方程组的解为 (5, 2)。
首先将其中一个未知数用,另一个未知数表示,然后代入另一个式子解方程即可
二元一次方程组的解法:
1、代入消元法
用一个未知数的式子表示另一个未知数,将这式子代入另一个方程,使方程消除一个未知数变成一元一次方程,然后解一元一次方程。如:
5X-2y=7①
X+2y=11②
解:将②式变成:
X=11-2y③
将③式代入①式,得:
5(11-2y)-2y=7
去括号
55-10y-2y=7
移项
-10y-2y=7-55
合并同类项
-12y=-48
两边同时除以y的系数-12
y=4
将y=4代入②式
X+2×4=11
X=11-8=3
2、加减消元法
使方程组的两个方程中的同一个未知数的系数相同或互为反数,再将这两个方程的等号两边相减或相加,消除一个未知数,使方程变成一元一次方程。如:
2X+3y=1①
3X+4y=5②
解:①×3-②×2
目的:使X的系数都为6。然后相减,消除X.
6X+9y=3
6X+8y=10
y=3-10=-7
将y=-7代入①
2X+3×(-7)=1
2X=1+21
X=11。
如何解二元一次方程
解二元一次方程方法如下:
1、整体代入法:整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入。
2、换元法:换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解,换元有一定的技巧性。
3、直接加减法:直接加减法有别于课本中的加减消元法,它通过将方程组中的方程相加减后把较繁的题目转化得相对简单。
4、消常数项法:可将两式消去常数项,直接得到图片与图片的关系式,而后代入消元。
5、相乘保留法:去分母时,如果把两数相乘得出结果,不仅数值变大,而且给下面的解题过程带来麻烦,所以有时我们暂时保留相乘的形式。
6、科学记数法:当方程组中出现比较大的数字时,可用科学记数法简写。
7、系数化整法:若方程组中含有小数系数,一般要将小数系数化为整数,便于运算。
8、对称法:这个方程组是对称方程组,其特点是把某一个方程中的x,y互换即可得到另一个方程。
9、拆数法:我们可以有目的地将常数项进行变形,通过观察得出方程组的解。
解二元一次方程的注意事项包括:
1、观察方程:仔细观察方程形式,确保其为二元一次方程。
2、化简方程:将方程中的常数项移动到等号右边,并把同类项合并,化简方程。
3、选择求解方法:根据实际情况选择适当的求解方法,如代入法、消元法等。
4、检验答案:将得到的解代入原方程中检验,确保方程成立。
5、注意特殊情况:有些方程可能存在无解或者有无数个解的情况,需要注意判断。
在解题过程中,需要注意符号的运算和变换,避免出现计算错误。另外,还要注意解题思路的清晰性和逻辑性,以及对题目的理解和分析能力。
如何解二元一次方程组?
二元一次方程组30x+9y=13,30x-9y=2的计算
主要内容:
本例方程组的主要特征是未知数系数相等,即介绍二元一次方程组30x+9y=13,30x-9y=2计算的主要方法与步骤。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
主要步骤:
※.方程加减法
1)方程相加法:
30x+9y=13……①,
30x-9y=2……②
则①+②有:
60x=13+2,即可求出x=1/4,
将x代入方程①有:
30*1/4+9y=13,
9y=11/2,即y=11/18,
则方程的解为:x=1/4, y=11/18。
? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ?
2)方程相减法:
30x+9y=13……①,
30x-9y=2……②
则①-②有:
18y=13-2,即可求出y=11/18,
将y代入方程①有:
30*x+9*(11/18)=13,
30x=15/2,即x=1/4。
则方程的解为:x=1/4, y=11/18。
? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
※.代入法
1)消元x法
由①有9y=13-30x,代入方程②:
30x-(13-30x)= 2,
60x-13=2,
60x=13+2,求出x=1/4,
将x代入方程①有:
30*1/4+by=13,
9y=11/2,即y=11/18,
则方程的解为:x=1/4, y=11/18。
? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
2)消元y法
由①有30x=13-9y,代入方程②:
13-9y-9y=2,
13-18y=2,
18y=13-2,可求出y=11/18,
将y代入方程①有:
30*x+9*(11/18)=13,
30x=15/2,即x=1/4。
则方程的解为:x=1/4, y=11/18。
?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
※.行列式法
方程组的系数行列式D0=|30,9; 30,-9|=-270-270=-540;
方程组对应x的行列式Dx=|13,9;2,-9|=-117-18=-135;
方程组对应y的行列式Dy=|30,13, 30,2|=60-390=-330;
则方程组x的解为:
x=Dx/D0=-135/-540=1/4,
y=Dy/D0=-330/-540=11/18。
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ?
二元一次方程的解法有:代入消元法、图像法、换元法。
加减法解二元一次方程组的步骤:
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式。
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法)。
③解这个一元一次方程,求出未知数的值。
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值。
对二元一次方程的解的理解应注意以下几点:
①一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值。
②二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解。
③在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解。
二元一次方程的解法3种
二元一次方程的解法3种如下:
1、代入消元法
将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。
2、图像法
二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的交点坐标即二元一次方程组的解。
3、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,使非标准型问题标准化、复杂问题简单化,变得容易处理。
二元一次方程:
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
二元一次方程的一般形式:ax+by+c=0其中a、b不为零。
二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。
二元一次方程组有哪些解法
二元一次方程,是指有两个未知数,并且未知数的指数是一次的方程,由两个二元一次方程组成的,就是二元一次方程组。
解二元一次方程组的思路,主要是消元,就是把未知数变为一个,其中,代入消元法和加减消元法是最常用的解题方法。
一:代入消元法
用代入消元法解二元一次方程组的一般步骤
(1)在方程组中选一个系数比较简单的方程,将这 个方程变形,用含一个未知数的代数式表示另一个未 知数;
(2)将这个关系式代入另一个方程,消去一个未知 数,得到一个一元一次方程;
(3)解这个一元一-次方程,求得一个未知数的值;
(4)将这个求得的未知数的值再代入关系式,求出 另一个未知数的值;
(5)写出方程组的解.
代入消元法需要注意的地方:
(1)当方程组含有用一个未知数表示另一个未知数 关系式时,用代入法比较简单;
(2)若方程组中未知数的系数为1(或一1),选择系 为1(或一1)的方程进行变形,用代入法也比较简便;(3)如果未知数系数的绝对值不是1,就选择未知数 数的绝对值最小的方程进行变形;
(4)将变形后的方程代入没有变形的方程中,不能代入 原方程。
二:加减消元法
用加减法解二元一一次方程组的一 般步骤
(1)确定消元对象,并把它的系数化成相等或互为相反数的数;
(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值;
(5)写出方程组的解.
加减消元法需要注意的地方
(1)当方程组中的两个方程有某个未知数的系数相同或互为相反数时,用加减消元法比较简便;
(2)若两个方程中同一个未知数的系数成倍数关系,可利用等式性质将其转化成(1)的类型,再选择加减消元法;
(3)若两个方程中同一个未知数系数的绝对值都不相等,则应选出一组系数(选最小公倍数较小的一组系教),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公.倍数),再使用加减消元法。
除此之外,还有整体消元法,对于比较复杂的二元一次方程组,有规律的,可以通过换元,把相同的式子看作一个整体来解。
二元一次方程组的解法
二元一次方程组的解法:代入消元法。
选一个系数比较简单的方程进行变形,变成y=ax+b或x=ay+b的形式;将y=ax+b或x=ay+b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
解这个一元一次方程,求出x或y值;将已求出的x或y值代入方程组中的任意一个方程(y=ax+b或x=ay+b),求出另一个未知数;把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
解方程
适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值。因此,任何一个二元一次方程都有无数多个解,由这些解组成的集合,叫做这个二元一次方程的解集。
二元一次方程组的解法:
一、代入消元法
(1)从方程中选一个系数比较简单的方程,将这个方程中的未知数用另一个未知数的代数式来表示,如用x表示y,可写成y=ax+b。
(2)将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程。
(3)解这个一元一次方程,求出x的值。
(4)把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解。
二、加减消元法
(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,也不相等时,可用适当的数乘以方程的两边,使一个未知数的系数互为相反数或相等,得到一个新的二元一次方程组。
(2)把这个方程组的两边分别相加(或相减),消去一个未知数,得到一个一元一次方程。
(3)解这个一元一次方程。
(4)将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。
一般来说,当方程组中有一个未知数的系数为1(或一1)或方程组中有1个方程的常数项为0时,选用代入消元法解比较简单;当同一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单。
二元一次方程组的解法
二元一次方程组有两种解法,第一种代入消元法,先从一个式子当中,用一个字母去表示另一个字母。例如2式子x+y=5,则x=5-y,用y表示出x ,把3式代入1式,这样就消去了一个未知数x。解一元一次方程,y等于3,代入2式,得出x=2,则方程组的解为x=2 , y=3。
第二种方法为加减消元法,可以通过乘以一个数,想办法把两个方程中,其中相对应的一个未知数的系数化为相同或者相反数的形式,然后两个式子进行相加或相减的运算。
例如,把2式乘以2得2x+2y=5,由1式和3式组成的方程组当中,x的系数相同。
由1式-3式得y=3,把y=3代入2式得,x=2,则方程组的解为x=2 , y=3。
由1式-3式得y=3,把y=3代入2式得,x=2,则方程组的解为x=2 , y=3。
二元一次方程组怎么解 详细过程
二元一次方程组的解法如下:代入消元法。
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤:
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,
求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).
拓展资料:
认识二元一次方程组的概念:一些把简单实际的问题中的数量关系,用二元一次方程组的形式来计算,学会用含有其中一个未知数的代数式表示另一个的方法,成立于一元一次方程之上。
二元一次方程组解题方法
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
例:解方程组 2x+5y=13 ①
3x-5y=7 ②
提示:①式中的5y和②式中的-5y是互为相反数的
分析:(2x + 5y)+(3x - 5y)=13 + 7
①左边+ ②左边 = ①左边+②左边
2x+5y +3x - 5y=20
5x+0y =20
5x=20
解:由①+②得: 5x=20
x=4
把x=4代入①,得y=1
所以原方程组的解是 x=4
y=1
二元一次方程组的解法!
上下有一个未知数要一样,如果两个的未知数异号,上下两式相加,同号则想减。。。
二元一次方程组解题方法和技巧如下:1、解法有两种,分别是“代入消元法”和“加减消元法”。2、技巧,代入消元法就是将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,得到一个未知数的方程,然后求出解即可。3、加减消除法技巧是,当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,得到一元一次方程,最后求得方程组的解。