本文目录一览:
- 1、急求一元一次方程应用题!!!!!!!30道左右
- 2、初一一元一次方程应用题(20道)
- 3、急急急!求50道简单的一元一次方程应用题,谢谢了!!!
- 4、求50道一元一次方程的应用题、注意是“应用题”!
- 5、一元一次方程带答案应用题
- 6、一元一次方程30道应用题和结果
- 7、初一数学一元一次方程应用题(带答案)
- 8、求100道一元一次方程应用题
- 9、求30道初一的一元一次方程应用题及答案.?
急求一元一次方程应用题!!!!!!!30道左右
你好,30道一元一次方程应用题如下(附答案),希望对你有用:
1,十一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
2,在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中或得纯收入多少元?
3,一架飞机杂两城之间飞行,风速为每小时24千米,顺风飞行需2小时50分钟,逆风飞行需要3小时。
(1)求无风时飞机飞行速度?
(2)求两城之间的距离?
4,抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲,乙两处各多少人?
5,某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片与镜架才能使每天生产的产品配套?
6,有一个长宽高分别为8.7.6厘米的长方体铁块和一个棱长为4厘米的正方形铁块熔炼成一个直径是20厘米的圆柱,求圆柱的高
7,有一个底面半径为5厘米的圆柱形储容器,油中浸有钢珠,若从中捞出546派(3.14....)克的钢珠,问液面下降多少(1厘米*3(3次方)钢珠重7.8克)?
8,分别锻造直径20毫米.高45毫米和直径30毫米.高30毫米的圆柱形零件毛胚各一个,需要截取直径50毫米的圆钢多少?
9,用内经为90mm的圆柱型长玻璃杯(已装满水)向一个内底面积为131*131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?
10,一桶油连桶的重量为8kg,油用去一半后,连桶的重量4.5kg,桶内原来有油多少kg?
11,轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2km/h,求轮船在静水中航行的速度。
12,一架飞机在两个城市之间,风速为24km/h,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程。
13,两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?
14,甲 乙 丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?
15,一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?
16,一工程甲单独要10天乙要12天,丙要15天,甲 丙先做3天甲离开乙参加工作 问 还! 需要几天
17,有含盐8%盐水40KG 使盐水含盐20% ①加盐多少 ②蒸发水分需蒸发多少KG水?
18,有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?
19,甲乙相距120千米 乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发 与甲相向而行经过10时后相遇,求甲 乙 的速度。
20,一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?
附答案:
1,.设哥哥用时为X小时:
6X=2+2X
解得:X=0.5小时。即:30分钟。(弟弟和妈妈用时1小时30分钟时追到)
而弟弟和妈妈要1小时45分钟。
所以说能追上。
2.设这次活动中获得纯收入为X元
X=380-6*[30+80/(300/30-2)]
X=140
3.设飞机速度为XKm/h。
2小时50分钟=17/6小时(X+24)*17/6=(X-24)*3
解得:X=840Km/h
距离是:(840-24)*3=2448Km
4.设应调往甲队x人,则乙队为23-x人
31+x=(21+23-x)*2
x=19
23-x=4
应调往甲乙两队分别为19人、4人
5.设每天有x个工人生产镜片,(60-x)个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为200x=(60-x)*50*2
方程两边同时除以100
2x=60-x
3x=60
x=20
20个工人生产镜片,40个工人生产镜架;
6,设圆柱的高是X,
8*7*6+4*4*4=3。14*10*10*X
7.设下降X厘米,
546*3。14/7。8=3。14*5*5*X
8,设要截取X,
14*10*10*45+3。14*15*15*30=3。14*25*25*X
9,水杯下降的高度就是它倒到铁盒里的那部分水,两者何种是相等的,故设下降了XMM,可得方程:131*131*81=3.14*45*45*X
解得X=218.6MM
故下降了218.6MM
10,油用以前和以后桶的质量是不变的。故设原来有XKG油可得方程
8-X=4.5-x/2
解得X=7
所以原来有油7KG
11,两种航行等方式不变的是两地间的距离,可设静水中速度为X
则可得方程(X+2)*4=(X-2)*5
解得X=18
故在静水中速度为18KM/H
12,设飞机本身速度是x千米每小时,可得方程
(x+24)*(2+5/6)=(X-24)*3
得X=840
两地距离为(X-24)*3=(840-24)3=2448KM;
13,解:设第一仓原有3x吨,第二仓原有x吨
(3x-20)*5/7=x+20
5(3x-20)=7(x+20)
15x-100=7x+140
8x=240
x=30
3x=3×30=90
答:第一仓原有90吨,第二仓原有30吨
14,解:设甲乙丙各分担3x,2x,4x元
3x+2x+4x=1440
9x=1440
x=160
3x=3×160=480
2x=2×160=320
4x=4×160=640
答:甲分担480元,乙分担320元,丙分担640元
15,解:设原数十位数字为x,个位数字为11-x
10(11-x)+x-(10x+11-x)=63
110-10+x-9x-11=63
18x=36
x=2
11-x=11-2=9
答:原来两位数为29
16,解:设还需要x天
(1/10+1/15)*3+(1/12+1/15)x=1
1/2+3/20*x=1
3/20*x=1/2
x=1/2*20/3
x=10/3
答:还需要10/3天
17,解:设加盐x千克
40×8%+x=(40+x)*20%
3.2+x=8+0.2x
0.8x=4.8
x=6
答:加盐6千克
2)解:设蒸发水x千克
(40-x)*20%=40*8%
8-0.2x=3.2
0.2x=4.8
x=24
答:需要蒸发水24千克
18,解:设需要70%酒精x千克,98%酒精100-x千克
7%x+98%(100-x)=100*84%
0.07x+98-0.98x=84
0.91x=14
x=200/13
100-x=100-200/13=1100/13
答:需要70%酒精200/13千克,98%酒精1100/13千克
19,解:设甲速度为每小时x千米,乙速度为每小时x+1千米
(2+10)x+10(x+1)=120
12x+10x+10=120
22x=110
x=5
x+1=5+1=6
答:甲速度为每小时5千米,乙速度为每小时6千米。
20,解:设客车速度为每分钟5x米,货车速度为每分钟3x米
5x-3x=200+280
2x=480
x=240
5x=240×5=1200
3x=240×3=720
答:客车速度为每分钟1200米,货车速度为每分钟720米
解:设交叉时间为y分钟
1200y+720y=200+280
1920y=480
y=0.25
1,十一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
2,在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中或得纯收入多少元?
3,一架飞机杂两城之间飞行,风速为每小时24千米,顺风飞行需2小时50分钟,逆风飞行需要3小时。
(1)求无风时飞机飞行速度?
(2)求两城之间的距离?
4,抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲,乙两处各多少人?
5,某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片与镜架才能使每天生产的产品配套?
6,有一个长宽高分别为8.7.6厘米的长方体铁块和一个棱长为4厘米的正方形铁块熔炼成一个直径是20厘米的圆柱,求圆柱的高
7,有一个底面半径为5厘米的圆柱形储容器,油中浸有钢珠,若从中捞出546派(3.14....)克的钢珠,问液面下降多少(1厘米*3(3次方)钢珠重7.8克)?
8,分别锻造直径20毫米.高45毫米和直径30毫米.高30毫米的圆柱形零件毛胚各一个,需要截取直径50毫米的圆钢多少?
9,用内经为90mm的圆柱型长玻璃杯(已装满水)向一个内底面积为131*131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?
10,一桶油连桶的重量为8kg,油用去一半后,连桶的重量4.5kg,桶内原来有油多少kg?
11,轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2km/h,求轮船在静水中航行的速度。
12,一架飞机在两个城市之间,风速为24km/h,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程。
13,两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?
14,甲 乙 丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?
15,一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?
16,一工程甲单独要10天乙要12天,丙要15天,甲 丙先做3天甲离开乙参加工作 问 还! 需要几天
17,有含盐8%盐水40KG 使盐水含盐20% ①加盐多少 ②蒸发水分需蒸发多少KG水?
18,有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?
19,甲乙相距120千米 乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发 与甲相向而行经过10时后相遇,求甲 乙 的速度。
20,一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?
一只正常鸡有2条腿,问多少只正常的鸡有10条腿?
2*x=10
x=5
你好,30道一元一次方程应用题如下(附答案),希望对你有用:
1,十一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
2,在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中或得纯收入多少元?
3,一架飞机杂两城之间飞行,风速为每小时24千米,顺风飞行需2小时50分钟,逆风飞行需要3小时。
(1)求无风时飞机飞行速度?
(2)求两城之间的距离?
4,抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲,乙两处各多少人?
5,某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片与镜架才能使每天生产的产品配套?
6,有一个长宽高分别为8.7.6厘米的长方体铁块和一个棱长为4厘米的正方形铁块熔炼成一个直径是20厘米的圆柱,求圆柱的高
7,有一个底面半径为5厘米的圆柱形储容器,油中浸有钢珠,若从中捞出546派(3.14....)克的钢珠,问液面下降多少(1厘米*3(3次方)钢珠重7.8克)?
8,分别锻造直径20毫米.高45毫米和直径30毫米.高30毫米的圆柱形零件毛胚各一个,需要截取直径50毫米的圆钢多少?
9,用内经为90mm的圆柱型长玻璃杯(已装满水)向一个内底面积为131*131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?
10,一桶油连桶的重量为8kg,油用去一半后,连桶的重量4.5kg,桶内原来有油多少kg?
11,轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2km/h,求轮船在静水中航行的速度。
12,一架飞机在两个城市之间,风速为24km/h,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程。
13,两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?
14,甲 乙 丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?
15,一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?
16,一工程甲单独要10天乙要12天,丙要15天,甲 丙先做3天甲离开乙参加工作 问 还! 需要几天
17,有含盐8%盐水40KG 使盐水含盐20% ①加盐多少 ②蒸发水分需蒸发多少KG水?
18,有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?
19,甲乙相距120千米 乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发 与甲相向而行经过10时后相遇,求甲 乙 的速度。
20,一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?
附答案:
1,.设哥哥用时为X小时:
6X=2+2X
解得:X=0.5小时。即:30分钟。(弟弟和妈妈用时1小时30分钟时追到)
而弟弟和妈妈要1小时45分钟。
所以说能追上。
2.设这次活动中获得纯收入为X元
X=380-6*[30+80/(300/30-2)]
X=140
3.设飞机速度为XKm/h。
2小时50分钟=17/6小时(X+24)*17/6=(X-24)*3
解得:X=840Km/h
距离是:(840-24)*3=2448Km
4.设应调往甲队x人,则乙队为23-x人
31+x=(21+23-x)*2
x=19
23-x=4
应调往甲乙两队分别为19人、4人
5.设每天有x个工人生产镜片,(60-x)个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为200x=(60-x)*50*2
方程两边同时除以100
2x=60-x
3x=60
x=20
20个工人生产镜片,40个工人生产镜架;
6,设圆柱的高是X,
8*7*6+4*4*4=3。14*10*10*X
7.设下降X厘米,
546*3。14/7。8=3。14*5*5*X
8,设要截取X,
14*10*10*45+3。14*15*15*30=3。14*25*25*X
9,水杯下降的高度就是它倒到铁盒里的那部分水,两者何种是相等的,故设下降了XMM,可得方程:131*131*81=3.14*45*45*X
解得X=218.6MM
故下降了218.6MM
10,油用以前和以后桶的质量是不变的。故设原来有XKG油可得方程
8-X=4.5-x/2
解得X=7
所以原来有油7KG
11,两种航行等方式不变的是两地间的距离,可设静水中速度为X
则可得方程(X+2)*4=(X-2)*5
解得X=18
故在静水中速度为18KM/H
12,设飞机本身速度是x千米每小时,可得方程
(x+24)*(2+5/6)=(X-24)*3
得X=840
两地距离为(X-24)*3=(840-24)3=2448KM;
13,解:设第一仓原有3x吨,第二仓原有x吨
(3x-20)*5/7=x+20
5(3x-20)=7(x+20)
15x-100=7x+140
8x=240
x=30
3x=3×30=90
答:第一仓原有90吨,第二仓原有30吨
14,解:设甲乙丙各分担3x,2x,4x元
3x+2x+4x=1440
9x=1440
x=160
3x=3×160=480
2x=2×160=320
4x=4×160=640
答:甲分担480元,乙分担320元,丙分担640元
15,解:设原数十位数字为x,个位数字为11-x
10(11-x)+x-(10x+11-x)=63
110-10+x-9x-11=63
18x=36
x=2
11-x=11-2=9
答:原来两位数为29
16,解:设还需要x天
(1/10+1/15)*3+(1/12+1/15)x=1
1/2+3/20*x=1
3/20*x=1/2
x=1/2*20/3
x=10/3
答:还需要10/3天
17,解:设加盐x千克
40×8%+x=(40+x)*20%
3.2+x=8+0.2x
0.8x=4.8
x=6
答:加盐6千克
2)解:设蒸发水x千克
(40-x)*20%=40*8%
8-0.2x=3.2
0.2x=4.8
x=24
答:需要蒸发水24千克
18,解:设需要70%酒精x千克,98%酒精100-x千克
7%x+98%(100-x)=100*84%
0.07x+98-0.98x=84
0.91x=14
x=200/13
100-x=100-200/13=1100/13
答:需要70%酒精200/13千克,98%酒精1100/13千克
19,解:设甲速度为每小时x千米,乙速度为每小时x+1千米
(2+10)x+10(x+1)=120
12x+10x+10=120
22x=110
x=5
x+1=5+1=6
答:甲速度为每小时5千米,乙速度为每小时6千米。
20,解:设客车速度为每分钟5x米,货车速度为每分钟3x米
5x-3x=200+280
2x=480
x=240
5x=240×5=1200
3x=240×3=720
答:客车速度为每分钟1200米,货车速度为每分钟720米
解:设交叉时间为y分钟
1200y+720y=200+280
1920y=480
y=0.25
答:相向而行,交叉时间为0.25分钟。
初一一元一次方程应用题(20道)
1、某人乘车行121千米 的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?
2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?
3、从每千克0.8元的苹果中取出一部分,又从每千克0.5元的苹果中取出一部分混合后共15千克,每千克要卖0.6元,问需从两种苹果中各取出多少千克?
4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离
5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的 ,问甲、乙两队单独做,各需多少天?
6、甲、乙两个仓库共有20吨货物,从甲仓库调出 到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?
7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?
8、一项工程300人共做,需要40天,如果要求提前10天完成,问需要增多少人?
9、一个两位数,个位上的数字是十位上的数字的2倍.先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数.若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小.
10、小王骑车从A地到B地共用了4小时.从B地返回A地,他先以去时的速度骑车行2小时,后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟.求小王从A地到B地的骑车速度.
11、 某人每小时可走平路8千米,可走下坡路10千米,可走上坡路6千米.他从甲地到乙地去,先走一段上坡路,再走一段平路,到乙地后立即返回甲地.往返共用了2小时36分钟.若甲乙两地间的路程为10千米,问在这10千米路程中,上坡路及平路各有多少千米?
12、有两支成分不同且长度相等的蜡烛,其中一支3小时可燃烧完,另一支4小时燃烧完.现在要求到下午四点钟时,其中一支蜡烛的剩余部分恰是另一支剩余部分的二倍,问应在何时点燃这两支蜡烛?
13、某同学要把450克浓度为60%的硝酸铵溶液配成浓度为40%的溶液,但他未经考虑便加入300克水.
(1) 请通过计算说明,该同学加进的水是超量的.
(2) 这时需加进硝酸铵多少克?配成浓度为40%的硝酸铵溶液多少克?
14、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的 ,丙班分到的比乙班少20本,问共有多少练习本?
15、汽车从A地往B地送货.如果往返都以每小时60千米的速度行驶,那么可以按时返回.可是当司机到达B地后才发现,从A地到B地每小时只走了55千米,为了按时返回A地,汽车应以多大速度往回开?
16、从家里骑摩托车到火车站,如果每小时行30千米,那么比开车时间早到15分钟;如果每小时行18千米,那么比开车时间迟到15分钟.现在打算在开车时间前10分钟到达,那么骑摩托车的速度应该是多少
17、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.
18、好马走15天的路程,劣马需走30天,已知劣马每天走150千米,问好马每天走多少千米?
19、一艘轮船发生漏水事故,海水以每分钟24桶的速度涌进底舱,发现时已漏进600桶海水.水手立即开动两部抽水机向外抽水,经50分钟将舱内的水抽完,已知甲机抽水量是乙机的 ,问甲、乙两机每分钟各抽水多少桶?
20、现有浓度为10%.及浓度为20%的两种酒精溶液.问各取多少可配制成浓度为14%的酒精溶液100升?
21、一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后.他们相遇.已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?
22、敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?
23、某班的男生人数比全班人数的 少5人,女生比男生少2人,求全班的人数.
24、甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
25、某水池有甲、乙两个给水龙头,单独开甲龙头时,2小时可以把空池灌满水.单独开乙龙头时,3小时可以把空池灌满水.现在先开甲龙头,半小时后再甲、乙两个龙头齐开.问把空池灌水 ,一共需要多少小时?
26、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
急急急!求50道简单的一元一次方程应用题,谢谢了!!!
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
1、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元
解:设甲可以装x吨,乙可以装y吨,则
2x+3y=15.5
5x+6y=35
得到x=4
y=2.5
得到(3x+5y)*30=735
2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?
解:原价销售时增加X%
(1-10%)*(1+X%)=1
X%=11.11%
为了使销售总金额不变.销售量要比按原价销售时增加11.11%
3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少?
解:设原价为x元
(1-10%)x-40=0.5x
x=100
答:原价为100元
4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?
解:设加盐x克
开始纯盐是40*8%克
加了x克是40*8%+x
盐水是40+x克
浓度20%
所以(40*8%+x)/(40+x)=20%
(3.2+x)/(40+x)=0.2
3.2+x=8+0.2x
0.8x=4.8
x=6
所以加盐6克
5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋?
解:设该商贩当初买进X个鸡蛋.
根据题意列出方程:
(X-12)*0.28-0.24X=11.2
0.28X-3.36-0.24X=11.2
0.04X=14.56
X=364
答:该商贩当初买进364个鸡蛋.
6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
解:设安排生产甲的需要x人,那么生产乙的有(85-x)人
因为2个甲种部件和3个乙种部件配一套,所以
所以生产的甲部件乘以3才能等于乙部件乘以2的数量
16*x*3=10*(85-x)*2
解得:x=25
生产甲的需要25人,生产乙的需要60人!
7、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元?
解:设标价为X元.
80%X=1996×(1+20%)
80%X= 2395.2
X=2994
8、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元?
解::设标价为X元.
80%X=22×(1+20%)
80%X= 26.4
X=33
9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?
解:(180+160)/(20+24)=7.28秒
10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。
解:首先要明确,甲乙的相遇时间等于狗来回跑的时间
所以狗的时间=甲乙相遇时间=总路程/甲乙速度和
=5km/(5km/h+3km/h)=5/8h
所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km
所以甲乙相遇狗走了75/8千米
楼主要加油哦~~
参考资料:百度知道
楼主是学生吗?
题目是死的,学会几个题就能掌控天下
个人愚见不必在意教材问题...
求50道一元一次方程的应用题、注意是“应用题”!
一元一次方程应用题归类汇集
(一)行程问题:
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.
5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇
(汽车掉头的时间忽略不计)?
时钟问题:
10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)
行船问题:
12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
(二)工程问题:
1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开
乙管,5小时注满水池。
① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把
水池注满?
② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三
管同时开放,多少小时才能把一空池注满水?
(三)和差倍分问题(生产、做工等各类问题):
1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?
3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.
(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)
(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?
5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?
6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?
7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.
(1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;
(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。
9.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:
表中有两处看不清楚,请你帮助确定表中数据。
比赛积分问题:
10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。
11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
年龄问题:
12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
比例问题:
14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
(四)调配问题:
1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?
3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(五)分配问题:
4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。
5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
(六)配套问题:
1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
(七)增长率问题:
1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %
2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是 。。
3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?
4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?
5.某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。(1)求今年油菜的种植面积。
设今年油菜的种植面积是x 亩。完成下表后再列方程解答。
(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。
6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。
利润与利润率:
7.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利15元,这种服装每件的成本为_________.
8.某件商品9折降价销售后每件商品售价为元,则该商品每件原价为( )
一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
9.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。已知进价x元时标价m元的60%,则x的值是( )
10.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.
11.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率
12.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?
13.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了 __________.(精确到0.01元.毛利率=)
14.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
15.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
16.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。他们一共要付________元
17.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: .问:
(1)当单价为4元时,市场需求量是多少?
(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?
18.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有 元(不计利息税)
本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。若年利率为x%,则可列方程__________________________。(年存储利息=本金×年利率×年数)
19.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。若设小明的这笔一年定期存款是x元,则下列方程中正确的是( )
(八)数字问题:
1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
3.将连续的奇数1,3,5,7,9…,排成如下的数表:
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
(九)几何问题:
1.一个长方形的周长长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为cm,可列方程是
2.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
4.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
5.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。
(十)方案设计与成本分析:
1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。
你认为哪种方案获利最多?为什么
2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.
3.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
4.某市的出租车计价规则如下:行程不超过3km,收起步价8元,超过部分每千米收费1.2元.某天张老师和三位学生去看望一学生,共乘了11km,请你算一下张老师应付车费 元。
5.据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?
6.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)
7.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
8.某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的路程的多少讨论用哪个公司的车比较合算?
9.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b ①分别用a、b表示用两种方式出售水果的收入。
②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?
10.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.
(1)试用含x的代数式表示出两种方案所需的费用; (2)当所需仪器为多少件时, 两种方案所需费用一样多? (3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.
11.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元;乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。
(1)、试求一个人要打电话30分钟,他应该选择那种通信业务?
(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?
12.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?
13.据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时” 电和“谷时” 电分别是多少度?
14.小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时
(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?
(3)照明多少时间用两种灯费用相等?
15.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30m2的墙面。
(1)求每个房间需要粉刷的墙面面积;
(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?
(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?
(十一)古典数学:
1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。
2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
(十二)浓度问题:
有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。
某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?
今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?
有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?
(十三)设辅助未知数:
1.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的2/3,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票的3/5,零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
2. 现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
一元一次方程带答案应用题
一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。这篇文章我给大家分享几个带答案的一元一次方程应用题,希望可以帮助同学们巩固知识点。
1.某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得2(1680-2y)+y=2280解得:y=360(名),所以1680-2y=960(名)。
(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
解:设甲服装成本价为x元,则乙服装的成本价为(50–x)元,根据题意,可列:109x(1+50%)–x+(500-x)(1+40%)90%-(500-x)=157,x=300。答:甲服装成本价为300元,甲服装成本价为200元。
3.一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:S/90=(S/2)/90+12/60+(S/2)/(90+10),解得:S=360(千米)。答:甲、乙两站距离360千米。
4.某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?
解:(48+X)90%*6–6X=(48+X-30)*9–9X,X=162,162+48=210。答:该电器每台进价162元、定价210元。
5.两根同样长的绳子,第一根绳子剪去15米,第二根比第一根剩下的3倍还多3米,请问原来的两根绳子长多少米?
解:设原来的两根绳子长x米。3(x-15)+3=x,3x-45+3=x2x=42,x=21。答:原来的两根绳子长21米。
一元一次方程30道应用题和结果
一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
解:3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x+15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力。
2.通过练习使学生进一步领会采用代数方法解应用题的优越性。
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及。当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事)。
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子)。
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸。
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么。)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位。)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识。
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25。
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%?x=600。
解得x=800。
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x。
解得 x=22.608。
4.请同学们根据一元一次方程
编一道应用题。
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”。然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%。张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍。
四、课外作业
教科书第242页复习题四A组的第5,6题。
补充题:
1.两数的和为27.14,差为2.22,求这两个数。(答案:14.68与12.46。)
提示:设小数为x,则大数为x+2.22。
2.两个正数的比为5:3,差为6,求这两个数。(答案:15与9。)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%。革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1。)
先来30道一元一次方程题,各种类型都有:
检举 一、判断正误
1. x+8=16,可以解释为4除以5倍的x与8的和为16. ( )
2.长方形的周长为8 cm,长是宽的2倍,如果设宽为x cm,则2(2x+x)=8. ( )
3.x=5是方程的解,那么在式子m+x=10中,m=5. ( )
4.x的2倍与2的3倍相同,则得出方程2x+2×3=0. ( )
二、选择题
1.下列是一元一次方程的是( )
A.x2-x=4 B.2x-y=0
C.2x=1 D. =2
2.如果方程 x2n-7- =1是关于x的一元一次方程,则n的值为( )
A.2 B.4 C.3 D.1
3.小新比小颖多5本书,小新是小颖的2倍,小新有书( )
A.10本 B.12本 C.8本 D.7本
4.父子年龄和是60岁,且父亲年龄是儿子的4倍,那么儿子( )
A.15岁 B.12岁 C.10岁 D.14岁
5.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为( )
A.10和2 B.8和4 C.7和5 D.9和3
6.小彬的年龄乘以2再减去1是15岁,那么小彬现在的年龄为( )
A.7岁 B.8岁 C.16岁 D.32岁
三、根据题意,列出方程
1.x的 与1的和为8.
2.x与 的商与4的差为9.
四、填空题
1.小明说小红的年龄比我大两岁,我俩的年龄和为18岁,求俩人年龄.若设小明x岁,则小红的年龄________岁.
根据题意,列方程得:________.
解这个方程:__________________________.
x=____________.
∴小红的年龄为________岁
小明的年龄为________岁
2.小丁今年5岁,妈妈30岁,几年后,妈妈的年龄是小丁的2倍,设x年后,妈妈的年龄是小丁的2倍.
x年后小丁年龄为_______岁,妈妈的年龄为_______岁.
根据题意列出方程为___________________,
解方程_______________,
x=___________.
∴____________年后,妈妈的年龄是小丁的2倍.
参考答案
一、1.× 2.√ 3.√ 4.×
二、1.C 2.B 3.A 4.B 5.B 6.B
三、1. x+1=8 2. -4=9
四、1.x+2 x+2+x=18 x=8 10岁 8岁 2.5+x 30+x 30+x=2(5+x) x=20 20
7(2x-1)-3(4x-1)=4(3x+2)-1;
(5y+1)+ (1-y)= (9y+1)+ (1-3y);
[ ( )-4 ]=x+2;
20%+(1-20%)(320-x)=320×40%
2(x-2)+2=x+1
2(x-2)-3(4x-1)=9(1-x)
11x+64-2x=100-9x
15-(8-5x)=7x+(4-3x)
3(x-7)-2[9-4(2-x)]=22
3/2[2/3(1/4x-1)-2]-x=2
一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。
2、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
设甲的速度为x,乙的速度为y
80x+80y=400
80y-80x=400
所以x=0 y=5(这道题时间为80秒与实际不符)
3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y
那么[x-4*(18-x-y)/60]/4=(18-y)/60
y/4=(18-x)/60+(18-x-y)/60
所以x=2 y=2
A点距离北山为2km
3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
设胜x场,负y场,则平11-x-y场
x=4y
3x+11-x-y=25
x=8
y=2
胜8场,负2场,平1场
4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
设原来有x组。所以人数是8x
(x-2)12=8x
x=6
共有48人。
5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?
设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。可列方程:
x+y=4/5.2
x-y=4/6.5
解得:x=9/13,y=1/13
6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?
5*(1/3)+5*X=15*X
x=1/6
6. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
(1/3)x/12=(1/3)x/[12*(5/4)]+1
化简得:
(5/3)x=(4/3)x+60
(1/3)x=60
x=180
所以麦地有180公顷.
7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答
解:设每分为X
2X+5X=14000
7X=14000
X=2000
2X=4000
5X=10000
所以甲分到4000元,乙分到10000元
8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
请列方程解应用题
设票价为x元
x+(35-20)*1.5%x=1323 x=1080
(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.
9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?
解:设这两件商品售价都为x元
因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x
售价为,x+x=2x
32/15x>2x 即进价>售价
所以亏损
10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
10道打折问题的应用题:
1)某商品的进价是200元,售价是260元。求 商品的利润、利润率。
2)一商店把彩电按标价的九折出售仍可获利润率20%,若该彩电的进价是2400元,则彩电的标价是多少?
3)某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的年利率。
4)一件皮茄克服装,按成本加四成作为售价,后因季节性原因,按原售价的八折优惠出售,优惠售价是1344元。问这件皮茄克服装的成本是多少?5)商店对某种商品作调价,按原价的八折出售,此时商品的利润率是10%,此商品的进价为1600元。求商品的原价。
6)某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的?
7)为了准备小郭6后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式:①直接存一个6年期,年利率是2.88%②先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是2.7%。你认为哪种储蓄方式开始存入的本金比较少?
8)一家商店里某种服装每件的成本价是50元,按标价的8折(即
按标价的80%)优惠卖出。
(1)、如果每件仍获利14元,这种服装的标价是多少元?
(2)、如果利润率为20%,这种服装的标价是多少元?
9)一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?
(1)提问:①这里60元的售价是如何得到的?
②如果设这批夹克每件的成本价为X元,那么如何
用X的代数式表示每件夹克的标价与实际的售价
10)商场将一件成本价为100元的夹克,按成本价提高50%后,标价150元,后按标价的8折出售给某顾客,请算一算,在这笔交易中商家有没有赚?
1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇
50a+75(a-1)=275
50a+75a-75=275
125a=350
a=2.8小时
2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。
设原定时间为a小时
45分钟=3/4小时
根据题意
40a=40×3+(40-10)×(a-3+3/4)
40a=120+30a-67.5
10a=52.5
a=5.25=5又1/4小时=21/4小时
所以甲乙距离40×21/4=210千米
3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?
解:设乙队原来有a人,甲队有2a人
那么根据题意
2a-16=1/2×(a+16)-3
4a-32=a+16-6
3a=42
a=14
那么乙队原来有14人,甲队原来有14×2=28人
现在乙队有14+16=30人,甲队有28-16=12人
4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率。
解:设四月份的利润为x
则x*(1+10%)=13.2
所以x=12
设3月份的增长率为y
则10*(1+y)=x
y=0.2=20%
所以3月份的增长率为20%
5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人?
解:设有a间,总人数7a+6人
7a+6=8(a-5-1)+4
7a+6=8a-44
a=50
有人=7×50+6=356人
6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?
按比例解决
设可以炸a千克花生油
1:0.56=280:a
a=280×0.56=156.8千克
完整算式:280÷1×0.56=156.8千克
7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?
解:设总的书有a本
一班人数=a/10
二班人数=a/15
那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本
8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有a人
5a+14=7a-6
2a=20
a=10
一共有10人
有树苗5×10+14=64棵
9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?
解:设油重a千克
那么桶重50-a千克
第一次倒出1/2a-4千克,还剩下1/2a+4千克
第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油
根据题意
1/8a-5/3+50-a=1/3
48=7/8a
a=384/7千克
原来有油384/7千克
10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)
设96米为a个人做
根据题意
96:a=33:15
33a=96×15
a≈43.6
所以为2班做合适,有富余,但是富余不多,为3班做就不够了
11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。
解:设原分数分子加上123,分母减去163后为3a/4a
根据题意
(3a-123+73)/(4a+163+37)=1/2
6a-100=4a+200
2a=300
a=150
那么原分数=(3×150-123)/(4×150+163)=327/763
12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)
设水果原来有a千克
60+60/(2/3)=1/4a
60+90=1/4a
1/4a=150
a=600千克
水果原来有600千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)
设原来有a吨
a×(1-3/5)+20=1/2a
0.4a+20=0.5a
0.1a=20
a=200
原来有200吨
14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少?
解:设长可宽分别为5a米,2a米
根据题意
5a+2a×2=48(此时用墙作为宽)
9a=48
a=16/3
长=80/3米
宽=32/3米
面积=80/3×16/3=1280/9平方米
或
5a×2+2a=48
12a=48
a=4
长=20米
宽=8米
面积=20×8=160平方米
15、某市移动电话有以下两种计费方法:
第一种:每月付22元月租费,然后美分钟收取通话费0.2元。
第二种:不收月租费 每分钟收取通话费0.4元。
如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢??
设每月通话a分钟
当两种收费相同时
22+0.2a=0.4a
0.2a=22
a=110
所以就是说当通话110分钟时二者收费一样
通话80分钟时,用第二种22+0.2×80=38>0.4×80=32
通过300分钟时,用第一种22+0.2×300=82<0.4×300=120
16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?
设a个工人加工桌面,则加工桌腿的工人有你60-a人
3a=(60-a)×6/4
12a=360-6a
18a=360
a=20
20人加工桌面,60-20=40人加工桌腿
17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离
设距离为a千米
a/(17/6)-24=a/3+24
6a/17-a/3=48
a=2448千米
18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从A B两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?
设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时
30分钟=1/2小时,40分钟=2/3小时
(4-2/3)a+(a+1.5)×(4-1/2)=12×3
10/3a+7/2a+21/4=36
41/6a=123/4
a=4.5千米/小时
甲的速度为4.5+1.5=6千米/小时
19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。
解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时
15分=1/4小时,6点15分到8点45分是5/2小时
距离差=7+1/4a
追及时间= 5/2小时
(1.5a-a)×5/2=7+1/4a
5/4a=7+1/4a
a=7千米/小时
甲的速度为7×1.5=10.5千米/小时
20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽?
设硬化路面为a米
40a×2+(30-2a)×a×3=40×30-198×2
80a+90a-6a2=804
3a2-85a+402=0
(3a-67)(a-6)=0
a=67/3(舍去),a=6
所以路宽为6米
因为3a<40
a<40/3
22、2007年有中小学生5千名2008年有所增加小学生增加百分之20,中学生增加百分之30这样2008年新增加1160名,小学生每人每年收500元中学生每人每年收1000元求2008年新增的1160名共收多少“借读费”?
解:设2007年有小学生a人,中学生5000-a人
a×20%+(5000-a)×30%=1160
0.2a+1500-0.3a=1160
0.1a=340
a=3400人
中学生有5000-3400=1600人
小学生增加3400×20%=680人
增加中学生1160-680=480人
共收借读费500×680+1000×480=820000=82万
23、商场搞促销活动,承诺大件商品可分期付款,但仅限为 2005年 五月一日 购买时先付一笔款,余下部分其他的利息(年利润为3%)在2006年五月一日 还清,某空调参与了,它的售价为8120元,若想够买,恰好两次付款此时相同,那么应付总款数多少元?
设先付a元,余下8120-a元未付
根据题意
a=(8120-a)×(1+3%)
a=8363.6-1.03a
2.03a=8363.6
a=4120元
应付总款数为4120×2=8240元
24、足球赛共赛8轮(即每队均需赛8场),胜一场得3分。平一场得1分,负一场得0分。这次比赛中,A队平的场数是所负场数的2倍,共17分,试问该队胜了几场?
设胜了a场,平的场数是2/3(8-a),负的场数是(8-a)/3
3a+2/3(8-a)=17
9a+16-2a=51
7a=35
a=5
胜了5场
25、我市计划捐书3500册,实际捐了4125册。其中初中生捐赠了原计划的120%,高中生捐赠了原计划的115%,问初中生和高中生比原计划多捐了多少书/
设初中生原计划捐a本,高中生计划捐3500-a
a×120%+(3500-a)×115%=4125
1.2a+4025-1.15a=4125
0.05a=100
a=2000本
高中生计划捐3500-2000=1500本
初中生比原计划多捐2000×(120%-1)=400本
高中生比原计划多捐1500×(115%-1)=225本
26、包装厂工人有42人,每人每小时生产120个圆形铁片,或是80个长方形铁片,将两个圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理的将铁片配套?
解:设生产圆形铁片a人,长方形铁片42-a人
120a=2×80×(42-a)
120a=6720-160a
280a=6720
a=24人
生产长方形铁片42-24=18人
27、商家为了促销某种商品,在现在的零售价的基础上打了七五折,接着又打了八折,这是零售价为360元,按这一价格出售,商店还有25%的利润,问:
(1)商品未打折前的零售价是多少?
(2)商品的进价是多少?
(3)按原价出售,利润率为多少?
解:设未打折前的零售价为a元
根据题意
a×0.75×0.8=360
0.6a=360
a=600元
(2)设进价为b元
(360-b)/b=25%
360-b=0.25b
1.25b=360
b=288元
(3)
原价出售,利润率=(600-288)/288×100%≈108%
28、甲每页打500字,乙每页打600字,已知甲完成8页,乙恰好能完成7页,若甲打完2页后,乙开始打字,当甲、乙打的字数相同时,乙打多少字?
解:可以看成行程问题里的追及问题
相同的时间内乙比甲快600×7-500×8=200字
甲比乙先打500×2=1000字
则当甲乙打字相同时,乙打了(1000/200)×600×7=21000页
方程:设乙大了a个字
a/(600×7)=(a-500×2)/(500×8)
4000a=4200a-4200000
200a=4200000
a=21000字
29、某书店一天内销售的甲乙两种书,甲共卖出1560元,乙共卖出1350元。若成本分开算,甲可获利25%,乙可亏本10%。试问该书店一天销售甲乙两种书籍共获利(亏本)多少元?
解:设甲的成本为a元
a×(1+25%)=1560
a=1248元
设乙的成本为b元
b×(1-10%)=1350
0.9b=1350
b=1500
总成本=1248+1500=2748元
一共卖出1560+1350=2910元
获利=2910-2748=162元
30、甲乙两件服装成本共500元。商店老板为获得利益,决定将甲按50%的利润定价,将乙按40%的利润定价,实际销售时为满足顾客要求,均按九折出售,共获利157元,试问,甲乙两件服装的成本各多少元?
解:设甲的成本为a元,则乙的成本为500-a元
根据题意
[a×(1+50%)+(500-a)×(1+40%)]×0.9-500=157
[1.5a+700-1.4a]×0.9=657
0.1a=730-700
0.1a=30
a=300
甲的成本300元,乙的成本500-300=200元
31、加工一批零件,甲单独做20天可以完成。乙单独做30天可以完成,现在两人合作完成这份工作,合作中甲休息了2.5天,乙休息了若干天,这样共用了14天,问乙休息了多少天?
解:设乙休息了a天,那么甲乙合作的时间是14-2.5-a=11.5-a天
(1/20+1/30)×(11.5-a)+1/30×2.5+1/20×a=1
5×(11.5-a)+5+3a=60
57.5-2a=55
2a=2.5
a=1.25天
32、某果品公司购进苹果52吨,每千克进价0.98元,付运输费等开支1840元,预计损耗为1/100,如果希望全销售后获利17/100,每千克苹果售价应当定为多少元?
解:52吨=52000千克
成本0.98×52000=50960元
实际销售52000×(1-1/100)=51480千克
设实际售价为a元
(a×51480-50960-1840)/50960=17/100
a×51480-52800=8663.2
51480a=61463.2
a≈1.19元
售价约为1.19元
33、某商场搞活动,一次性购物不超过200,不优惠,超过200但不超过500,按9折优惠,超过500,超过部分按8折优惠,,500仍按9折优惠,某人两次购物分别用了134元和466元
1.此人两次购物,若不打折,值多少钱
2.若将两次购物的钱加起来,一起购买相同的产品,是否更节省?说明理由
解:
设y为要付的价格 x为原价
不超过200 y=x(0≤x≤200)
超过200不到500 y=0.9x(200<x≤500)(180
(1)
第一次的134元小于200元 所以第一次购物 y=x=134元
第二次的若原花费为500元,则购物实际所花为0.9*500=450元,所以第二次的物品实际价值超过500元(用超过500的公式)
466=50+0.8x
0.8x=416
x=520元
(2)
两次购物的物品原价之和为520+134=654元
实际花费为500+134=634元
那么他节省了654-634=20元
(3)
如果2次加起来是654元,买相同的商品需要花费
y=50+0.8×654=573.2元
节省654-573.2=80.8元
比第一种方法多节省80.8-20=60.8元
初一数学一元一次方程应用题(带答案)
例1:夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量.相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405.根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可.
设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电度.依题意,得:
1.1x+(x+27)=405
解得: x=180
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.
二、分段型;分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题.解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决.
例2:某水果批发市场香蕉的价格如下表:
购买香蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上
每千克价格 6元 5元 4元
购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元.张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克.由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元.我们再分两种情况讨论即可.
1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264解得:x=1450-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,
根据题意,得:6x+4(50-x)=264解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉例
3:参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.
住院医疗费(元) 报销率(%)
不超过500元的部分 0
超过500~1000元的部分 60
超过1000~3000元的部分 80
某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
A、1000元 B、1250元 C、1500元 D、2000元
设此人住院费用为x元,根据题意得:500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D.
三、方案型 方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程.
例4:某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位. (1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数; (2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人.请你求出该校初三年级学生的总人数.
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15用40座客车的辆数表示总人数:40(x-2)+35.
(1)该校初三年级学生的总人数为:30x+15
(2)由题意得: 30x+15=40(x-2)+35
解得:x=6 30x+15=30×6+15=195(人) 答:初三年级总共195人.
求100道一元一次方程应用题
1 ,地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
2, 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
3, 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
4 ,将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14)
5, 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?
6, 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?3X+189=521 4Y+119=22 3X*189=5 8Z/6=458 3X+77=59 4Y-6985=81 87X*13=5 7Z/93=41 15X+863-65X=54 58Y*55=27489 z*(z-3)=4 方程x2= 的根为 。 2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。 3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。 4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。 5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。 6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。 7、 请写出一个根为1,另一个根满足-1
额
这个最好要掌握方法
不能总靠做题学会
可以少做一些,不用100吧!
关键在掌握方法。
一元一次怎么可能难到哪儿去……
顶多就左边右边都有x,比如
2(x+3)=3(3x-5)之类
1 ,地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
2, 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
3, 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
4 ,将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14)
5, 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?
6, 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?3X+189=521 4Y+119=22 3X*189=5 8Z/6=458 3X+77=59 4Y-6985=81 87X*13=5 7Z/93=41 15X+863-65X=54 58Y*55=27489 z*(z-3)=4 方程x2= 的根为 。 2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。 3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。 4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。 5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。 6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。 7、 请写出一个根为1,另一个根满足-1
求30道初一的一元一次方程应用题及答案.?
初一二元一次方程组应用题题目加答案30道30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成.问:甲乙两队原计划各修多少千米?
设甲乙原来的速度每天各修a千米,b千米
根据题意
(a+b)×50=200(1)
10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)
化简
a+b=4(3)
a+0.6+4a+3b+b+0.4=20
5a+4b=19(4)
(4)-(3)×4
a=19-4×4=3千米
b=4-3=1千米
甲每天修3千米,乙每天修1千米
甲原计划修3×50=150千米
乙原计划修1×50=50千米
2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元.求自动笔的单价,和钢笔的单价.
设自动铅笔X元一支 钢笔Y元一支
4X+2Y=14
X+2Y=11
解得X=1
Y=5
则自动铅笔单价1元
钢笔单价5元
3、据统计2009年某地区建筑商出售商品房后的利润率为25%.
(1)2009年该地区一套总售价为60万元的商品房,成本是多少?
(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润.
(1)成本=60/(1+25%)=48万元
(2)设2010年60万元购买b平方米
2010年的商品房成本=60/(1+1/3)=45万
60/b-2a=60/(b+20)(1)
45/b-a=48/(b+20)(2)
(2)×2-(1)
30/b=36/(b+20)
5b+100=6b
b=100平方米
2010年每平方米的房价=600000/100=6000元
利润=6000-6000/(1+1/3)=1500元
4、某商店电器柜第一季度按原定价(成本+利润)出售A种电器若干件,平均每件获得百分之25的利润.第二季度因利润略有调高,卖出A种电器的件数只有第一季度卖出A种电器的6分之5,但获得的总利润却与第一季度相同.
(1)求这个柜台第二季度卖出A种电器平均每件获利润百分之几?
(2)该柜台第三季度按第一季度定价的百分之90出售A种电器,结果卖出的件数比第一季度增加了1.5倍,求第三季度出售的A种电器的利润比第一季度出售的A种电器的总利润增加百分之几?
(1)设成本为a,卖出件数为b,第二季度利润率为c
那么利润=a×25%=1/4a
第二季度卖出电器5/6b件
第一季度的总利润=1/4ab
第二季度利润=ac×5/6b=5/6abc
根据题意
1/4ab=5/6abc
c=1/4×6/5
c=3/10=30%
(2)第一季度定价=a(1+25%)=5/4a
第三季度定价=5/4a×90%=9/8a
第三季度卖出(1.5+1)b=2.5b件
第三季度的总利润=9/8a×2.5b-2.5ab=5/16ab
第三季度比第一季度总利润增加(5/16ab-1/4ab)/(1/4ab)=(1/16)/(1/4)=0.25=25%
5、将若干只鸡放入若干个笼中.若每个笼中放4只,则有一只鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,那么,鸡、笼各多少?
设鸡有x只,笼有y个
4y+1=x
5(y-1)=x
得到x=25,y=6
6、用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y
x+y=36 (1)
2*25x=40y (2)
由(1)得36-y=x (3)
将(3)代入(2)得;
50(36-y)=40y
y=20
又y=20代入(1)得:x=16
所以;x=16
y=20
答:用16张制盒身,用20制盒底.
用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒与2个盒底配成一套罐头盒.现有225张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?
x张做盒身,y张做盒底
x+y=225(1)
2×16x=43y (2)
由(1)得225-y=x (3)
将(3)代入(2)得;
32(225-y)=43y
7200-32y=43y
75y=7200
y=96
又y=16代入(1)得:x=225-96=129
所以;x=129
y=96
或者设x张盒身,225-x张盒底
2×16x=43×(225-x)
32x=9675-43x
75x=9675
x=129
答:用129张制盒身,用96制盒底.
7、现在父母年龄的和是子女年龄的6倍;2年前,父母年龄的和子女年龄的和是子女年龄的和的10倍;父母年龄的和是子女年龄的3倍.问:共有子女几日?
父母年龄之和为X 子女年龄之和为Y 设有N个子女
X=6Y
(X-4)=10(Y-n*2)
6Y-4=10Y-20N
4Y=20N-4
Y=5N-1
(X+12)=3(Y+n*6)
6Y+12=3Y+18N
3Y=18N-12
Y=6N-4
6N-4=5N-1
N=3
答:有3个子女
8、甲,乙两人分别从A、B两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离
甲、乙两人从A地出发到B地,甲不行、乙骑车.若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走1小诗,则乙出发后半小时追上甲,求A、B两地的距离.
设甲的速度为a千米/小时,乙的速度为b千米/小时
45分钟=3/4小时
6+3/4a=3/4b
a=(b-a)x1/2
化简
b-a=8(1)
3a=b(2)
(1)+(2)
2a=8
a=4千米/小时
b=3x4=12千米/小时
AB距离=12x3/4=9千米
9、工厂与A.B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000的产品运到B地.已知公路运价为1.5元/ (吨、千米),铁路运价为1.2元/(吨、千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和为多少元?
10、张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元5角,B型号的信封每个比A型号的信封便宜2分.两种型号的信封的单价各是多少?
设A型信封的单价为a分,则B型信封单价为a-2分
设买A型信封b个,则买B型信封30-b个
1元5角=150分
ab=150(1)
(a-2)(30-b)=150(2)
由(2)
30a-60-ab+2b=150
把(1)代入
30a-150+2b=210
30a+2b=360
15a+b=180
b=180-15a
代入(1)
a(180-15a)=150
a2-12a+10=0
(a-6)2=36-10
a-6=±√26
a=6±√26
a1≈11分,那么B型信封11-2=9分
a2≈0.9分,那么B型信封0.9-2=-1.1不合题意,舍去
A型单价11分,B型9分
11、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度?
设火车的速度为a米/秒,车身长为b米
1分钟=60秒
60a=1000+b
40a=1000-,2,