本文目录一览:
- 1、一元二次方程配方法
- 2、如何用配方法解一元二次方程?
- 3、怎样用配方法解一元二次方程
- 4、到底什么是配方法,一元二次方程用配方法怎样解?
- 5、一元二次方程的配方法是什么?
- 6、求一元二次方程的配方法怎么做啊?
- 7、配方法解一元二次方程步骤是什么?
- 8、如何用配方法解一元二次方程?
- 9、该如何使用配方法解一元二次方程?
一元二次方程配方法
一元二次方程配方法如下:
1、看方程中是否有x的平方项和x项,有的话要分别放到等式的两边;
2、看方程中是否有1,有的话要分别放到等式的两边;
3、将上述两部分加在一起,如果有两个相同的部分,要分别放到等式的两边。
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
扩展资料:
配方法的其他运用:求最值。示例说明如下:
已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x2+3x+y-3=0<=>y=3-3x-x2。
代入(x+y)得x+y=3-2x-x2=-(x2+2x-3)=-[(x+1)2-4]=4-(x+1)2。
由于(x+1)2≥0,故4-(x+1)2≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
配方法的实际应用:
配方法除了可以用来解一元二次方程之外还可以应用于以下方面:
1、用于比较大小:通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值:将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值:将原式化成一个完全平方式后可求出最值。
4.用于证明:“配方法”在代数证明、二次函数中有着广泛的应用。
如何用配方法解一元二次方程?
将一元二次方程配成 的形式,再利用直接开平方法求解的方法
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
配方法解一元二次方程实例:
扩展资料:
开平方法
(1)形如 或 的一元二次方程可采用直接开平方法解一元二次方程 。
(2)如果方程化成 的形式,那么可得 。
(3)如果方程能化成 的形式,那么 ,进而得出方程的根。
(4)注意:
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
参考资料:一元二次方程-百度百科
怎样用配方法解一元二次方程
1.配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解的方法;
2.用配方法解一元二次方程的步骤:①一般形式:把原方程化为一般形式;②二次项系数化为1:方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③配方:方程两边同时加上一次项系数一半的平方;④完全平方:把左边配成一个完全平方式,右边化为一个常数;⑤开方:方程两边同时开平方,得到一元一次方程;⑥得解:解一元一次方程,得出原方程的解;
3.说明:配方之后形成“左平方右常数”的形式,如果方程右边是非负数,则方程有两个实根;如果右边是一个负数,则方程没有实数根;配方法的理论依据是——完全平方公式a2+b2+2ab=(a+b)2;配方法的关键是——先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方;
4.举例:
配方法解方程
5.有不明白的地方欢迎追问!
到底什么是配方法,一元二次方程用配方法怎样解?
1. 定义:
配方法:将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
2. 解一元二次方程的配方法:
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
3. 示例:
【例】解方程:2x2+6x+6=4
分析:原方程可整理为:x2+3x+3=2,
x2+2×3/2x=-1
x2+2×3/2x+(3/2)2=-1+(3/2)2
(x+3/2)2=5/4
x+3/2=±√5/2
即
x1,2=(-3±√5)/2.
配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2=
把一个一元二次方程变形为(x+h)2=k(h.k为常数)的形式,当k≥0时,就可以用直接开平方法求出方程的解.这种节一元二次方程的方法叫做配方法
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
例: 解方程:3+8 x-3=0
解:3+8 x-3=0
+8/3x-1=0 (化1:把二次项系数化为1;)
+8/3x=1 (移项:把常数项移到方程的右边;)
+8/3x+=1+( 配方:方程两边都加上一次项系数绝对值一半的平方;
=
(变形:方程左边分解因式,右边合并同类项;)
x+4/3=± 5/3 (开方:根据平方根的意义,方程两边开平方;)
x+4/3= 5/3 或 x+4/3=-5/3 ( 求解:解一元一次方程;)
所以x1=1/3, x2=-3 ( 定解:写出原方程的解)
扩展资料
1、配方法解一元二次方程的口诀:一除二移三配四开方。
2、配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方。
3、配方法的理论依据是完全平方公式。
配方法的应用
1、用于比较大小
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
参考资料来源:百度百科-配方法
一元二次方程的配方法是什么?
一元二次方程配方法公式为ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数,bx叫作一次项,b是一次项系数,c叫作常数项。
通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程(quadratic equation with one unknown)。使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根(root)。
通过分析古巴比伦泥板上的代数问题,可以发现,在公元前2250年古巴比伦人就已经掌握了与求解一元二次方程相关的代数学知识,并将之应用于解决有关矩形面积和边的问题。相关的算法可以追溯到乌尔第三王朝。
在发现于卡呼恩(Kahun)的两份古埃及纸草书上也出现了用试位法求解二次方程的问题。
公元前300年前后,活跃于古希腊文化中心亚历山大的数学家欧几里得(Euclid)所著的《几何原本》(Euclid’s Elements)中卷II命题5、命题6以及卷VI命题12、命题13的内容相当于二次方程的几何解。
继欧几里得之后,亚历山大数学发展第二次高潮“白银时代”的代表人物丢番图(Diophantus)发表了《算术》(Arithmetica)。该书出现了若干二次方程或可归结为二次方程的问题。这足以说明丢番图熟练掌握了二次方程的求根公式,但仍限于正有理根。
不过他始终只取一个根,如果有两个正根,他就取较大的一个。中国古代数学很早就涉及二次方程问题。在中国传统数学最重要的著作《九章算术》中就已涉及相关问题。因此可以肯定,二次方程及其解法自东汉以来就已为人们所熟知了。
求一元二次方程的配方法怎么做啊?
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式。
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1。
3、方程两边同时加上一次项系数一半的平方。
4、再把方程左边配成一个完全平方式,右边化为一个常数。
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
扩展资料:
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。
由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:
这个表达式称为二次方程的求根公式。
参考资料:百度百科——配方法
配方法解一元二次方程步骤是什么?
配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
扩展资料:
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
参考资料来源:百度百科-一元二次方程
如何用配方法解一元二次方程?
用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
扩展资料:
配方法的其他运用:求最值。示例说明如下:
已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x2+3x+y-3=0<=>y=3-3x-x2。
代入(x+y)得x+y=3-2x-x2=-(x2+2x-3)=-[(x+1)2-4]=4-(x+1)2。
由于(x+1)2≥0,故4-(x+1)2≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
参考资料:百度百科-一元二次方程
该如何使用配方法解一元二次方程?
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
【例】解方程:2x2+6x+6=4
分析:原方程可整理为:x2+3x+3=2,通过配方可得(x+1.5)2=1.25通过开方即可求解。
解:2x2+6x+6=4
<=>(x+1.5)2=1.25
x+1.5=1.25的平方根
扩展资料
求解方程的原则:
1.移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2.等式的基本性质
性质1
等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)
(2)
性质2
等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c 或
性质3
若a=b,则b=a(等式的对称性)。
性质4
若a=b,b=c则a=c(等式的传递性)。
参考资料:百度百科-配方法
配方法其实是基于直接开方法,利用开方和的完全平方公式特性来解。完全平方公式是将一个两项系数的式子的平方变成三项,进行因式分解。用字母表示为:(a+b)2=a2+2ab+b2、(a-b)2=a2-2ab+b2。用配方法解一元二次方程的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次顶系数化为1;
(3)等式两边同时加上一次项系数一半的平方;
(4)运用直接开平方法求得方程的根。
扩展资料:
当二次项系数不为一时,用配方法解一元二次方程的一般步骤:
1、化二次项系数为1。
2、移常数项到方程右边。
3、方程两边同时加上一次项系数一半的平方。
4、化方程左边为完全平方式。
5、(若方程右边为非负数)利用直接开平方法解得方程的根。
参考资料来源:百度百科-配方法