本文目录一览:
- 1、一元一次方程应用题8种类型是什么?
- 2、一元一次方程应用题的8种类型分别是哪八种?
- 3、一元一次方程应用题类型有哪些
- 4、一元一次方程的应用有哪些?
- 5、七年级数学一元一次方程应用题类型有哪些?
- 6、初一的解一元一次方程中的应用题教教我各种类型题的方法
- 7、一元一次方程怎么解?
- 8、初一数学一元一次方程应用题所有种类(列方程解答)要分类,有例子
- 9、30道关于一元一次方程的应用题
一元一次方程应用题8种类型是什么?
一元一次方程应用题8种类型如下:
1、追击问题:行程问题中的三个基本量及其关系:路程=速度×时间、时间=路程÷速度、速度=路程÷时间。
2、相遇问题:快行距+慢行距=原距、快行距-慢行距=原距。
3、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度、逆水(风)速度=静水(风)速度-水流(风)速度。
4、水流问题:水流速度=(顺水速度-逆水速度)÷2。
5、工程问题:三个量及其关系为:工作总量=工作效率×工作时间,经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1。
6、环形跑道与时钟问题:跑道÷两人速度差,甲的路程+乙的路程=环形周长,追及时间=路程差÷速度差,速度差=路程差÷追及时间,追及时间×速度差=路程差,快的路程-慢的路程=曲线的周长。
7、经济问题:商品利润=商品售价-商品成本价。商品利润率=商品利润商品成本价×100%。商品销售额=商品销售价×商品销售量。商品的销售利润=(销售价-成本价)×销售量。商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。
8、和、差、倍、分问题:增长量=原有量×增长率,在量=原有量+增长量。
一元一次方程应用题的8种类型分别是哪八种?
分别是列方程、倍数干系、增长量、等积变形、劳力调配、行程问题、工程问题和浓度问题。
1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车
2、 甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。乙每小时行4千米,甲每小时行XX千米。
3、 在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远。
4、 在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远。
5、 在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇。
6、 一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车。
7、 甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车。
8、 兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米。
扩展资料:
一元一次方程通常可用于做数学应用题,也可应用于物理、化学的计算。
如在生产生活中,通过已知一定的液体密度和压强,通过公式代入解方程,进而计算液体深度的问题。例如计算大气压强约等于多高的水柱产生的压强,已知大气压约为100000帕斯卡,水的密度约等于1000千克每立方米,g约等于10米每二次方秒(10牛每千克),则可设水柱高度为h米,列方程得1000*10h=100000,解得h=10,即可得知大气压强约等于10米的水柱所产生的压强。
参考资料来源:百度百科-一元一次方程
一元一次方程应用题类型有哪些
1
一元一次方程应用题归类汇集
一般行程问题(相遇与追击问题)
1.行程问题中的三个基本量及其关系:
路程=速度×时间 时间=路程÷速度 速度=路程÷时间 2.行程问题基本类型
(1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为 。
2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?
3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?
4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,
骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米?
6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千
米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因
事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下
发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均
每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得 。 环行跑道与时钟问题:
1、在6点和7点之间,什么时刻时钟的分针和时针重合?
2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地
同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?
3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;
一元一次方程的应用有哪些?
应用如下:
(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率 ,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘。
2、等式的基本性质:
(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
二元一次方程组的应用
一元一次方程的应用如下:
1、追击问题:行程问题中的三个基本量及其关系:路程=速度×时间、时间=路程÷速度、速度=路程÷时间。
2、相遇问题:快行距+慢行距=原距、快行距-慢行距=原距。
3、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度、逆水(风)速度=静水(风)速度-水流(风)速度。
4、水流问题:水流速度=(顺水速度-逆水速度)÷2。
5、工程问题:三个量及其关系为:工作总量=工作效率×工作时间,经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1。
一元一次方程解法:
1、去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
2、去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
3、移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。
4、合并同类项。
5、将未知数的系数化为1:根据不等式基本性质2或3。
七年级数学一元一次方程应用题类型有哪些?
一元一次方程应用题主要有十个类型:和差倍分问题、利润率问题、储蓄问题、工程问题、行程问题、规律问题、等积变形、百分率问题、鸡兔同笼问题、年龄问题、数字问题。
一元一次方程应用题是七年级数学的重点和难点,也是中考的重要内容。学好一元一次方程应用题也是为学习不等式应用题及分式应用题等打下基础,所以如何学好一元一次方程应用题是每位老师、每位学生及家长都很的问题。
学好一元一次方程应用题首先要掌握解方程应用题的基本步骤:
1、弄清题意,用字母(如X)表示问题里的未知数。
2、分析题意,找出相等关系(可借助于示意图、表格)。
3、根据相等关系,列出需要的代数式,从而列出方程;(注意:左右两边单位统一,已知条件都要用上)。
4、解这个方程,求出未知数的值。
5、检查所得的值是否正确和符合实际情形,并写出答案(包括单位名称)。
初一的解一元一次方程中的应用题教教我各种类型题的方法
摘要:列方程解应用题在思维方式上面与小学阶段的列算式解应用题已经有了明显的差异,主要表现在从题意出发寻求解法到从所求出发寻求解法的转变,作为教师,就要试图让学生建立列方程的这一思想,会善用、活用一元一次方程这个数学模型。关键词:一元一次方程,等量关系,列方程 列一元一次方程解应用题是七年级数学的一大重点,也是一大难点,而且这也是学生从小学升入初中后第一次接触到用代数的方法处理应用题。如何恰当好处的通过建立一元一次方程这一数学模型,从而得到解决问题的方案,是学生思维的一次重大飞跃。并且,学好这一部分的知识,对于今后整个初中阶段的列方程或者方程组解应用题起到良好的奠定作用。运用方程解决实际问题的一般过程是:1、 审题:分析题意,找出题目中蕴含的基本数量及其相互关系。2、 设元:选择一个适当的未知数用字母表示,例如,等。3、 列方程:根据等量关系列出方程。4、 解方程:根据解方程的基本步骤,求出未知数的值。5、 检验:检查求得的未知数的值是否是这个方程的解,是否符合实际情形,并写出答案。6、 总结:对题目中有关问题进行回答。通过第五章一元一次方程的教学,深刻理解到了学好这一章的重要性。如何让学生更好地会用、善用、用好一元一次方程这一数学模型,是本文展开的方向和目的。希望通过本文的撰写与试讲,能让学生体验到一元一次方程解应用题的灵活性和简单性,也让学生对此类问题有更深刻的理解。下面,就将一元一次方程的应用题的八种常见题型及其特点概括如下。一、行程问题例1 甲骑摩托车,乙骑自行车同时从相距的两地相向而行,已知甲每小时行驶的路程是乙每小时行驶的路程的倍少。若乙骑自行车先行,甲再出发,相向而行,甲出发后相遇,求乙骑自行车的速度。分析:甲乙相向而行,乙骑自行车先行,甲再出发,后相遇,能相遇,说明甲乙两人的路程和等于总路程,从而找到等量关系:甲的路程+乙先行路程+乙的路程 =解:设乙骑自行车的速度为千米/时,根据题意,得解得 检验:是方程的解,并且符合实际情况。答:乙骑自行车的速度是千米/时。总结:行程问题往往可以根据题意画出示意图,找到等量关系,利用行程问题中的基本关系:路程=速度×时间,寻求等量关系,从而列出方程。二、等积变形问题例2 用一根直径为的圆柱形铅柱铸造只直径为的铅球,问应截取多长的铅柱?(球的体积为,是半径)分析:把铅柱铸造成铅球,体积不变,根据这一等量关系,建立方程。解:设应该截取铅柱的长度为,根据题意,得解得 检验:是方程的解,并且符合实际情况。答:应截取长的铅柱。总结:此类问题的关键在“等积变形”上,找到等量关系。学生必须掌握常见几何图形的面积、体积公式。三、调配问题例3 某工程队分甲、乙两个小组,甲组有人,乙组有人,要使两组的人数相同,问需从乙组调出多少人到甲组?分析:从乙组调人到甲组,使得两组人数相等,这就找到等量关系了,就是:甲组原来人数 +调进人数=乙组原来人数 -调出人数解:设需从乙组调出人到甲组,根据题意,得解得 检验:是方程的解,并且符合实际情况。答:需从乙组调出人到甲组。总结:从调配后的数量关系中找到等量关系,另外还要注意调配对象流动的方向和数量。四、工程问题例4 修建一条若干千米的公路,甲施工队单独做需天才能完成,乙施工队单独做比甲单独做可提前天完成,如果甲施工队先施工天,剩下的部分由甲、乙一起施工,问还需几天才能完成?分析:把工程任务看成单位,那么甲每天的工作量是,乙每天的工作量是;甲先施工,天后甲乙一起施工,加起来的总和就是总的工程任务,也就是找到了等量关系:甲天的工作量+甲乙一起的工作量=总的工程任务解:设还需天才能完成,根据题意,得解得 检验:是方程的解,并且符合实际情况。答:还需天才能完成。总结:关于这类工程问题,关键是要利用其基本数量关系:工作总量=工作效率×工作时间,一起做的效率=单独做的效率的和。当工作总量未给出具体数量时,常设工作总量为“1”,分析时可采用示意图来帮助理解题意,从而理清思路,找到等量关系。五、银行储蓄问题例5 国家规定存款利息的纳税办法是利息税=利息,银行一年定期储蓄的年利率为。今小明取出一年到期的本金及利息时,交纳了利息税元,求小明一年前存入银行的钱为多少元?分析:关键是知道利息税=利息 =本金年利率,从而设立未知数列出方程。解:设小明一年前存入银行的钱为元,根据题意,得解得 检验:是方程的解,并且符合题意。答:小明一年前存入银行的钱为元。总结:关于这类银行储蓄的问题,要让学生深刻了解其基本数量关系:毛利息=本金×年利率,利息税=毛利息×税率,纯利息=毛利息-利息税,实得本利和=本金+纯利息=本金+毛利息-利息税。看到任何相关题目,根据所求设未知数,找到等量关系,从而找到解决问题的方法。六、和、差、倍、分问题例6 某公司员工今年人均收入比去年提高了,且今年人均收入是去年的倍少了元,那么去年的人均收入是多少?分析:题意中前面两句话都讲明了今年人均收入与去年人均收入的关系,根据这个关系,利用今年人均收入不变,建立等量关系。解:设去年的人均收入是元,根据题意,得解得 检验:是方程的解,并且符合题意。答:去年的人均收入是元。总结:这类问题中常含有“多、少、大、小、几分之几、几倍、增加、减少”等等词语体现等量关系。审题时要找到关键句,抓住关键词,确定两者之间的关系,并且还要注意每个词的微小差别,不能混淆。七、数字问题例7 有一个两位数,它的十位上的数字比个位上的数字小,十位上的数字与个位上的数字之和等于这个两位数的,求这个两位数。分析:根据十位上的数字与个位上的数字之和等于这个两位数的找到等量关系:十位上的数字+个位上的数字=这个两位数解:设这个两位数的个位数字是,根据题意,得解得 检验:是方程的解,并且符合实际情况。那么,十位上的数字是,这个两位数是。答:这个两位数是36。总结:这类问题通常采用间接设未知数的方法,常见的解题思路是抓住数字间或者新数与原数之间的关系,从而找到等量关系。列方程的前提还必须会正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积的和。八、鸡兔同笼问题例8 某停车场的收费标准如下:中型汽车的停车费为元/辆,小型汽车的停车费为元/辆。现在停车场有辆中、小型汽车,这些车共缴纳停车费元,问中、小型汽车各有多少辆?分析: 根据停车场有辆中、小型汽车,只要设其中一个个体为,那么另一个个体肯定可以用含有的代数式来表示,再利用这些车共缴纳停车费元,建立如下等量关系:中型汽车停车费+小型汽车停车费=共缴纳的停车费元解:设中型汽车有辆,根据题意,得解得 检验:是方程的解,并且符合实际情况。那么小型汽车有辆。答:中型汽车有辆,小型汽车有辆。总结:这类问题特点是两个总量都和两个个体有关系,因此两个总量就是两个等量关系。在解题过程中可以设其中一个个体为X,利用等量关系列方程。鸡兔同笼的问题,因为小学阶段接受过很多了,所以学生比较容易接受。 关于一元一次方程的应用题,在教学中要突出关于问题解决的策略、思想、方法的引导。列方程解应用题在思维方式上面与小学阶段的列算式解应用题已经有了明显的差异,主要表现在从题意出发寻求解法到从所求出发寻求解法的转变,作为教师,就要试图让学生建立列方程的这一思想,会善用、活用一元一次方程这个数学模型。
一元一次方程怎么解?
只含有1个未知数、未知数的最高次数为1,且两边都为整式的等式[必须满足含有未知数、是等式、两边是整式]叫做一元一次方程
一元一次方程的表示:ax+b=0,其中a≠0
例如3x+5=11是一元一次方程
3x+5不是一元一次方程,因为不是等式
3×2+5=11不是一元一次方程,因为没有未知数
x分之1+5=11不是一元一次方程,因为等式两边不是整式
3x2+5=11不是一元一次方程,因为最高项的次数不是1
解一元一次方程的一般步骤是:
去分母:在方程两边都乘以各分母的最小公倍数.
去括号:先去小括号,再去中括号,最后去大括号.
移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.
合并同类项:把方程化成ax[+c]=b(a≠0)的形式.
系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b[-c]/a
例如
3x+5=11
解[一定要写]:3x+5-5=11-5
3x=6
3x÷3=6÷3
x=2
解一元一次方程应用题8种常用公式
①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;
②行程类问题,即路程=速度×时间;
③工程问题,即工作量=工作效率×工作时间;
④浓度问题,即溶质质量=溶液质量×浓度;
⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系;
⑥等积问题,即变形前后的质量(或体积)不变;
⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a;
⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=利润×100%.
望采纳
初一数学一元一次方程应用题所有种类(列方程解答)要分类,有例子
很多的,要根据题来看,主要有1.行程问题2.优化问题3.几何。。不会我可以教你做
放假了,张华骑自行车从家里出发去游玩。他先以12km/h的速度下山,然后又以9km/h的速度走过一段平路到玄天湖,用了55min;回来时,他先用8km/h的速度过平路,又以4km/h的速度上山,用了1.5h。求张华到玄天湖的路程。
买本中学数学词典
一元一次方程应用题分类讲评
湖北省黄石市下陆中学 宋毓彬
一元一次方程应用题是初一数学学习的重点,也是一个难点。主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。
事实上,方程就是一个含未知数的等式。列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。
下面就一元一次方程中常见的几类应用题作逐一讲评,供同学们学习时参考。
1.行程问题
行程问题中有三个基本量:路程、时间、速度。关系式为:①路程=速度×时间;②速度=;③时间=。
可寻找的相等关系有:路程关系、时间关系、速度关系。在不同的问题中,相等关系是灵活多变的。如相遇问题中多以路程作相等关系,而对有先后顺序的问题却通常以时间作相等关系,在航行问题中很多时候还用速度作相等关系。
航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化:①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
例1.某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。问往返共需多少时间?
讲评:这一问题实际上分为两个过程:①从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;②从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇。
在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米。由追及问题中的相等关系“追赶者的路程-被追者的路程=原来相隔的路程”,有:
3x-1.5x=450 ∴x=300
在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有: 3y+1.5y=450 ∴y=100
故往返共需的时间为 x+y=300+100=400(秒)
例2 汽车从A地到B地,若每小时行驶40km,就要晚到半小时:若每小时行驶45km,就可以早到半小时。求A、B 两地的距离。
讲评:先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”。在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系。本题中,设A、B两地的路程为x km,速度为40 km/小时,则时间为小时;速度为45 km/小时,则时间为小时,又早到与晚到之间相隔1小时,故有
- = 1 ∴ x = 360
例3 一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2 km。求甲、乙两地之间的距离。
讲评:设甲、乙两地之间的距离为x km,则顺流速度为km/小时,逆流速度为km/小时,由航行问题中的重要等量关系有:
-2= +2 ∴ x = 96
2.工程问题
工程问题的基本量有:工作量、工作效率、工作时间。关系式为:①工作量=工作效率×工作时间。②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
例4. 加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务。问乙需工作几天后甲再继续加工才可正好按期完成任务?
讲评:将全部任务的工作量看作整体1,由甲、乙单独完成的时间可知,甲的工作效率为,乙的工作效率为,设乙需工作x 天,则甲再继续加工(12-x)天,乙完成的工作量为,甲完成的工作量为,依题意有 +=1 ∴x =8
例5. 收割一块麦地,每小时割4亩,预计若干小时割完。收割了后,改用新式农具收割,工作效率提高到原来的1.5倍。因此比预计时间提前1小时完工。求这块麦地有多少亩?
讲评:设麦地有x亩,即总工作量为x亩,改用新式工具前工作效率为4亩/小时,割完x亩预计时间为小时,收割亩工作时间为/4=小时;改用新式工具后,工作效率为1.5×4=6亩/小时,割完剩下亩时间为/6=小时,则实际用的时间为(+)小时,依题意“比预计时间提前1小时完工”有
-(+)=1 ∴ x =36
例6. 一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。现在三管齐开,需多少时间注满水池?
讲评:由题设可知,甲、乙、丙工作效率分别为、、-(进水管工作效率看作正数,排水管效率则记为负数),设x小时可注满水池,则甲、乙、丙的工作量分别为,、-,由三水管完成整体工作量1,有 +-=1 ∴ x = 5
3.经济问题
与生活、生产实际相关的经济类应用题,是近年中考数学创新题中的一个突出类型。经济类问题主要体现为三大类:①销售利润问题、②优惠(促销)问题、③存贷问题。这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。
⑴销售利润问题。利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。基本关系式有:①利润=销售价(收入)-成本(进价)【成本(进价)=销售价(收入)-利润】;②利润率=【利润=成本(进价)×利润率】。在有折扣的销售问题中,实际销售价=标价×折扣率。打折问题中常以进价不变作相等关系。
⑵优惠(促销)问题。日常生活中有很多促销活动,不同的购物(消费)方式可以得到不同的优惠。这类问题中,一般从“什么情况下效果一样分析起”。并以求得的数值为基准,取一个比它大的数及一个比它小的数进行检验,预测其变化趋势。
⑶存贷问题。存贷问题与日常生活密切相关,也是中考命题时最好选取的问题情景之一。存贷问题中有本金、利息、利息税三个基本量,还有与之相关的利率、本息和、税率等量。其关系式有:①利息=本金×利率×期数;②利息税=利息×税率;③本息和(本利)=本金+利息-利息税。
例7.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同样商品40件。如果商店销售这种商品时,要获利12%,那么这种商品的销售价应定多少?
讲评:设销售价每件x 元,销售收入则为(10+40)x元,而成本(进价)为(5×10+40×12.5),利润率为12%,利润为(5×10+40×12.5)×12%。由关系式①有
(10+40)x-(5×10+40×12.5)=(5×10+40×12.5)×12% ∴x=14.56
例8.某种商品因换季准备打折出售,如果按定价七五折出售,则赔25元,而按定价的九折出售将赚20元。问这种商品的定价是多少?
讲评:设定价为x元,七五折售价为75%x,利润为-25元,进价则为75%x-(-25)=75%x+25;九折销售售价为90%x,利润为20元,进价为90%x-20。由进价一定,有
75%x+25=90%x-20 ∴ x = 300
例9. 李勇同学假期打工收入了一笔工资,他立即存入银行,存期为半年。整存整取,年利息为2.16%。取款时扣除20%利息税。李勇同学共得到本利504.32元。问半年前李勇同学共存入多少元?
讲评:本题中要求的未知数是本金。设存入的本金为x元,由年利率为2.16%,期数为0.5年,则利息为0.5×2.16%x,利息税为20%×0.5×2.16%x,由存贷问题中关系式③有 x +0.5×2.16%x-20%×0.5×2.16%x=504.32 ∴ x = 500
例10.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店8折购物,什么情况下买卡购物合算?
讲评:购物优惠先考虑“什么情况下情况一样”。设购物x元买卡与不买卡效果一样,买卡花费金额为(200+80%x)元,不买卡花费金额为x元,故有
200+80%x = x ∴ x = 1000
当x >1000时,如x=2000 买卡消费的花费为:200+80%×2000=1800(元)
不买卡花费为:2000(元 ) 此时买卡购物合算。
当x <1000时,如x=800 买卡消费的花费为:200+80%×800=840(元)
不买卡花费为:800(元) 此时买卡不合算。
4.溶液(混合物)问题
溶液(混合物)问题有四个基本量:溶质(纯净物)、溶剂(杂质)、溶液(混合物)、浓度(含量)。其关系式为:①溶液=溶质+溶剂(混合物=纯净物+杂质);②浓度=×100%=×100%【纯度(含量)=×100%=×100%】;③由①②可得到:溶质=浓度×溶液=浓度×(溶质+溶剂)。在溶液问题中关键量是“溶质”:“溶质不变”,混合前溶质总量等于混合后的溶质量,是很多方程应用题中的主要等量关系。
例11.把1000克浓度为80%的酒精配成浓度为60%的酒精,某同学未经考虑先加了300克水。⑴试通过计算说明该同学加水是否过量?⑵如果加水不过量,则应加入浓度为20%的酒精多少克?如果加水过量,则需再加入浓度为95%的酒精多少克?
讲评:溶液问题中浓度的变化有稀释(通过加溶剂或浓度低的溶液,将浓度高的溶液的浓度降低)、浓化(通过蒸发溶剂、加溶质、加浓度高的溶液,将低浓度溶液的浓度提高)两种情况。在浓度变化过程中主要要抓住溶质、溶剂两个关键量,并结合有关公式进行分析,就不难找到相等关系,从而列出方程。
本题中,⑴加水前,原溶液1000克,浓度为80%,溶质(纯酒精)为1000×80%克;设加x克水后,浓度为60%,此时溶液变为(1000+x)克,则溶质(纯酒精)为(1000+x)×60%克。由加水前后溶质未变,有(1000+x)×60%=1000×80%
∴x = >300 ∴该同学加水未过量。
⑵设应加入浓度为20%的酒精y克,此时总溶液为(1000+300+y)克,浓度为60%,溶质(纯酒精)为(1000+300+y)×60%;原两种溶液的浓度分别为1000×80%、20%y,由混合前后溶质量不变,有(1000+300+y)×60%=1000×80%+20% ∴ y=50
5.数字问题
数字问题是常见的数学问题。一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:任何数=∑(数位上的数字×位权),如两位数=10a+b;三位数=100a+10b+c。在求解数字问题时要注意整体设元思想的运用。
例12. 一个三位数,三个数位上的和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍。求这个数。
讲评:设这个数十位上的数字为x,则个位上的数字为3x,百位上的数字为(x+7),这个三位数则为100(x+7)+10x+3x。依题意有(x+7)+x+3x=17 ∴x=2
∴100(x+7)+10x+3x=900+20+6=926
例13. 一个六位数的最高位上的数字是1,如果把这个数字移到个位数的右边,那么所得的数等于原数的3倍,求原数。
讲评:这个六位数最高位上的数移到个位后,后五位数则相应整体前移1位,即每个数位上的数字被扩大10倍,可将后五位数看成一个整体设未知数。设除去最高位上数字1后的5位数为x,则原数为10+x,移动后的数为10x+1,依题意有 10x+1=10+x
∴x = 42857 则原数为142857
6.调配(分配)与比例问题
调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
例14.甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。问原来每架上各有多少书?
讲评:本题难点是正确设未知数,并用含未知数的代数式将另一书架上书的本数表示出来。在调配问题中,调配后数量相等,即将原来多的一方多出的数量进行平分。由题设中“从甲书架拿100本书到乙书架,两架书相等”,可知甲书架原有的书比乙书架上原有的书多200本。故设乙架原有x本书,则甲架原有(x+200)本书。从乙架拿100本放到甲架上,乙架剩下的书为(x-100)本,甲架书变为(x+200)+100本。又甲架的书比乙架多5倍,即是乙架的六倍,有 (x+200)+100=6(x-100) ∴x=180 x+200=380
例15.教室内共有灯管和吊扇总数为13个。已知每条拉线管3个灯管或2个吊扇,共有这样的拉线5条,求室内灯管有多少个?
讲评:这是一道对开关拉线的分配问题。设灯管有x支,则吊扇有(13-x)个,灯管拉线为条,吊扇拉线为条,依题意“共有5条拉线”,有+=5∴x=9
例16.某车间22名工人参加生产一种螺母和螺丝。每人每天平均生产螺丝120个或螺母200个,一个螺丝要配两个螺母,应分配多少名工人生产螺丝,多少名工人生产螺母,才能使每天生产的产品刚好配套?
讲评:产品配套(工人调配)问题,要根据产品的配套关系(比例关系)正确地找到它们间得数量关系,并依此作相等关系列出方程。本题中,设有x名工人生产螺母,生产螺母的个数为200x个,则有(22-x)人生产螺丝,生产螺丝的个数为120(22-x)个。由“一个螺丝要配两个螺母”即“螺母的个数是螺丝个数的2倍”,有 200x=2×120(22-x)
∴x=12 22-x=10
例17. 地板砖厂的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制搅拌而成。现已将前三种料称好,公5600千克,应加多少千克的水搅拌?前三种料各称了多少千克?
讲评:解决比例问题的一般方法是:按比例设未知数,并根据题设中的相等关系列出方程进行求解。本题中,由四种坯料比例25∶2∶1∶6,设四种坯料分别为25x、2x、x、6x千克,由前三种坯料共5600千克,有 25x+2x+x=5600
∴ x=200 25x=5000 2x=400 x=200 6x=1200
例18. 苹果若干个分给小朋友,每人m个余14个,每人9个,则最后一人得6个。问小朋友有几人?
讲评:这是一个分配问题。设小朋友x人,每人分m个苹果余14个,苹果总数为mx+14,每人9个苹果最后一人6个,则苹果总数为9(x-1)+6。苹果总数不变,有
mx+14=9(x-1)+6 ∴x= ∵x、m均为整数 ∴9-m=1 x=17
例19. 出口1吨猪肉可以换5吨钢材,7吨猪肉价格与4吨砂糖的价格相等,现有288吨砂糖,把这些砂糖出口,可换回多少吨钢材?
讲评:本题可转换成一个比例问题。由猪肉∶钢材=1∶5,猪肉∶砂糖=7∶4,得猪肉∶钢材∶砂糖=7∶35∶4,设可换回钢材x吨,则有 x∶288=35∶4 ∴x=2620
7.需设中间(间接)未知数求解的问题
一些应用题中,设直接未知数很难列出方程求解,而根据题中条件设间接未知数,却较容易列出方程,再通过中间未知数求出结果。
例20.甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,得到的4个数却相等。求甲、乙、丙、丁四个数。
讲评:本题中要求4个量,在后面可用方程组求解。若用一元一次方程求解,如果设某个数为未知数,其余的数用未知数表示很麻烦。这里由甲、乙、丙、丁变化后得到的数相等,故设这个相等的数为x,则甲数为,乙数为,丙数为,丁数为,由四个数的和是43,有 +++=43 ∴x = 36
∴ =14 =12 =9 =8
例21.某县中学生足球联赛共赛10轮(即每队均需比赛10场),其中胜1场得3分,平1场得1分,负1场得0分。向明中学足球队在这次联赛中所负场数比平场数少3场,结果公得19分。向明中学在这次联赛中胜了多少场?
讲评:本题中若直接将胜的场次设为未知数,无法用未知数的式子表示出负的场数和平的场数,但设平或负的场数,则可表示出胜的场数。故设平x场,则负x-3场,胜10-(x+x-3)场,依题意有 3[10-(x+x-3)]+x=19 ∴x=4 ∴ 10-(x+x-3)=5
8.设而不求(设中间参数)的问题
一些应用题中,所给出的已知条件不够满足基本量关系式的需要,而且其中某些量不需要求解。这时,我们可以通过设出这个量,并将其看成已知条件,然后在计算中消去。这将有利于我们对问题本质的理解。
例22.一艘轮船从重庆到上海要5昼夜,从上海驶向重庆要7昼夜,问从重庆放竹牌到上海要几昼夜?(竹排的速度为水的流速)
分析:航行问题要抓住路程、速度、时间三个基本量,一般有两种已知量才能求出第三种未知量。本题中已知时间量,所求也是时间量,故需在路程和速度两个量中设一个中间参数才能列出方程。本题中考虑到路程量不变,故设两地路程为a公里,则顺水速度为,逆水速度为,设水流速度为x,有-x=+x ∴x=,又设竹排从重庆到上海的时间为y昼夜,有 ·x=a ∴x=35
例23. 某校两名教师带若干名学生去旅游,联系两家标价相同的旅行社,经洽谈后,甲旅行社的优惠条件是:1名教师全部收费,其余7.5折收费;乙旅行社的优惠条件是:全部师生8折优惠。
⑴当学生人数等于多少人时,甲旅行社与乙旅行社收费价格一样?
⑵若核算结果,甲旅行社的优惠价相对乙旅行社的优惠价要便宜,问学生人数是多少?
讲评:在本题中两家旅行社的标价和学生人数都是未知量,又都是列方程时不可少的基本量,但标价不需求解。⑴中设标价为a元,学生人数x人,甲旅行社的收费为a+0.75a(x+1)元,乙旅行社收费为0.8a(x+2)元,有 a+0.75a(x+1)=0.8a(x+2) ∴ x=3
⑵中设学生人数为y人,甲旅行社收费为a+0.75a(x+1)元,乙旅行社收费为0.8a(x+2)元,有 0.8a(x+2)-[a+0.75a(x+1)]=×0.8a(x+2) ∴x=8。
30道关于一元一次方程的应用题
一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
解:3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x+15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力。
2.通过练习使学生进一步领会采用代数方法解应用题的优越性。
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及。当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事)。
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子)。
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸。
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么。)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位。)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识。
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25。
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%?x=600。
解得x=800。
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x。
解得 x=22.608。
4.请同学们根据一元一次方程
编一道应用题。
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”。然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%。张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍。
四、课外作业
教科书第242页复习题四A组的第5,6题。
补充题:
1.两数的和为27.14,差为2.22,求这两个数。(答案:14.68与12.46。)
提示:设小数为x,则大数为x+2.22。
2.两个正数的比为5:3,差为6,求这两个数。(答案:15与9。)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%。革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1。)够了吧,还要可追问,希望你满意。